answersLogoWhite

0

You are both raising the factors or numerator and denominator

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

Raising a product to a power exponent rule?

power of 0


How do you find the power of a quotient?

The power of a quotient is the quotient of the power! (a/b)^n = (a^n) / (b^n) where a/b is the quotient and n is the power.


What is the five law of exponents?

The five laws of exponents are: Product of Powers: ( a^m \times a^n = a^{m+n} ) — When multiplying like bases, add the exponents. Quotient of Powers: ( \frac{a^m}{a^n} = a^{m-n} ) — When dividing like bases, subtract the exponents. Power of a Power: ( (a^m)^n = a^{m \times n} ) — When raising a power to another power, multiply the exponents. Power of a Product: ( (ab)^n = a^n \times b^n ) — Distribute the exponent to each factor inside the parentheses. Power of a Quotient: ( \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} ) — Distribute the exponent to the numerator and denominator.


When the product of 6 and 6 is the divided by the sum of 6 and 6 what is the quotient?

its 5 squared divided by the sum of 28 to the power of ten. -maths teacher


Raising a number to the third power?

Raising a number to the third power is referred to as cubed.


When raising a power to a power this is what you do with the exponents?

Multiply them.


What is the second power of the quotient of 80?

80


What is power the quotient of?

work and time brah!


What is the general rule for raising a number to the power of 1?

Raising a number to the power of 1 doesn't change the number.


How many zeros does the quotient 50000 divided by 10 by the power of 3?

Just the one because the quotient is 50


Exponent and identity identity?

Certainly! Here are some key formulas and properties related to exponents and identity elements: Exponents Formulas: *Product of Powers:* [ a^m \cdot a^n = a^{m+n} ] When multiplying two exponents with the same base, you add the exponents. *Quotient of Powers:* [ \frac{a^m}{a^n} = a^{m-n} \quad (\text{for } a \neq 0) ] When dividing two exponents with the same base, you subtract the exponents. *Power of a Power:* [ (a^m)^n = a^{m \cdot n} ] When raising an exponent to another power, you multiply the exponents. *Power of a Product:* [ (ab)^n = a^n \cdot b^n ] When raising a product to a power, you raise each factor to the power. *Power of a Quotient:* [ \left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \quad (\text{for } b \neq 0) ] When raising a quotient to a power, you raise both the numerator and the denominator to the power. *Zero Exponent:* [ a^0 = 1 \quad (\text{for } a \neq 0) ] Any non-zero number raised to the power of zero is 1. *Negative Exponent:* [ a^{-n} = \frac{1}{a^n} \quad (\text{for } a \neq 0) ] A negative exponent indicates the reciprocal of the base raised to the opposite positive exponent. Identity Elements: *Additive Identity:* [ a + 0 = a \quad \text{and} \quad 0 + a = a ] The number 0 is the additive identity because adding 0 to any number ( a ) leaves ( a ) unchanged. *Multiplicative Identity:* [ a \times 1 = a \quad \text{and} \quad 1 \times a = a ] The number 1 is the multiplicative identity because multiplying 1 by any number ( a ) leaves ( a ) unchanged. These formulas and properties are fundamental in algebra and are used frequently in solving equations and simplifying expressions. If you need further details or examples, please let me know!


What are the seven rules for exponents?

Rules for exponents to multiply powers, add the exponents to divide powers, subtract the exponents to find a power of a power, multiply the exponents to find a power of a quotient, apply the power top and bottom to find a power pf a product, apply the exponent to each factor in the product x0 = 1 anything to the power zero equals one x-a = 1/xa a negative exponent means "one over" the positive exponent