Best Answer

Yuo can make only one combination of 30 digits using 30 digits.

Q: How many combinations can you make using 30 digits and what are they?

Write your answer...

Submit

Still have questions?

Continue Learning about Other Math

9,000 - all the numbers between 1,000 and 9,999 inclusive. * * * * * NO. Those are PERMUTATIONS, not COMBINATIONS. Also, the question specified 4 digit combinations using 4 digits. The above answer uses 10 digits. If you start with 4 digits, you can make only 1 combination.

The order of the digits in a combination does not matter. So 123 is the same as 132 or 312 etc. There are 10 combinations using just one of the digits (3 times). There are 90 combinations using 2 digits (1 once and 1 twice). There are 120 combinations using three different digit. 220 in all.

There is only one combination. The order of the digits in combinations makes no difference. They are considered as being different if they are permutations, not combinations.

There are only 10 combinations. In each combination one of the 10 digits is left out.

Since the order of the digits does not matter there are only five combinations: 1234, 1235, 1245, 1345 and 2345.

Related questions

6 for 3-digits, 6 for 2-digits, 3 for 1-digits, and 15 for all of the combinations

If you use them only once each, you can make 15 combinations. 1 with all four digits, 4 with 3 digits, 6 with 2 digits, and 4 with 1 digit. There is also a combination containing no digits making 16 = 24 combinations from 4 elements.

Assuming the digits cannot be repeated, there are 7 combinations with 1 digit, 21 combinations with 2 digits, 35 combinations with 3 digits, 35 combinations with 4 digits, 21 combinations with 5 digits, 7 combinations with 6 digits and 1 combinations with 7 digits. That makes a total of 2^7 - 1 = 127: too many for me to list. If digits can be repeated, there are infinitely many combinations.

9,000 - all the numbers between 1,000 and 9,999 inclusive. * * * * * NO. Those are PERMUTATIONS, not COMBINATIONS. Also, the question specified 4 digit combinations using 4 digits. The above answer uses 10 digits. If you start with 4 digits, you can make only 1 combination.

If the 6 digits can be repeated, there are 1296 different combinations. If you cannot repeat digits in the combination there are 360 different combinations. * * * * * No. That is the number of PERMUTATIONS, not COMBINATIONS. If you have 6 different digits, you can make only 15 4-digit combinations from them.

5040, assuming none of the digits are the same. (Assuming they're not, there's 5040 unique combinations you can make out of 7 digits).

The order of the digits in a combination does not matter. So 123 is the same as 132 or 312 etc. There are 10 combinations using just one of the digits (3 times). There are 90 combinations using 2 digits (1 once and 1 twice). There are 120 combinations using three different digit. 220 in all.

9.

There is only one combination. The order of the digits in combinations makes no difference. They are considered as being different if they are permutations, not combinations.

∞ \ Infinite

There are infinite combinations that can make 3879

1