With 4 bits, you can represent 2^4 or 16 different numbers. This is because each bit can have 2 possible values (0 or 1), so with 4 bits you have 2 x 2 x 2 x 2 = 16 possible combinations. These numbers range from 0 to 15 in decimal representation.
Chat with our AI personalities
Using 4 bits the signed range of numbers is -8 to 7. When working with signed numbers one bit is the sign bit, thus with 4 bits this leaves 3 bits for the value. With 3 bits there are 8 possible values, which when using 2s complement have ranges: for non-negative numbers these are 0 to 7; for negative numbers these are -1 to -8. Thus the range for signed 4 bit numbers is -8 to 7.
4 bits. 24 = 16, so you have 16 different combinations.4 bits. 24 = 16, so you have 16 different combinations.4 bits. 24 = 16, so you have 16 different combinations.4 bits. 24 = 16, so you have 16 different combinations.
A Venn diagram for numbers divisible by both 4 and 5 would have two overlapping circles. One circle would represent numbers divisible by 4, while the other circle would represent numbers divisible by 5. The overlapping region where the two circles intersect would represent numbers divisible by both 4 and 5. This intersection would include numbers that are multiples of both 4 and 5, such as 20, 40, 60, and so on.
2178 x 4 = 8172
2