Best Answer

7 quadrilaterals = 7 x 4 = 28 sides

8 hexagons = 8 x 6 = 48 sides

Total is 76 sides

Q: How many sides are there on 7 quadrilaterals and 8 hexagons?

Write your answer...

Submit

Still have questions?

Continue Learning about Other Math

A heptagon has 7 sides.

7 sides

7

A polygon with 7 sides and 7 angles is a heptagon.

First, a hexagon has 6 sides. Second, congruent means the polygons are the same size and shape. Third, regular hexagon means that all of the angles and the same and the lengths of the sides are the same. For my explanation, let's work with squares. If you were to overlap two perfect squares, you would get at 1 area. Rotate one of those squares, and you will get 8 areas, 4 on the inside and 4 on the outside. Since there is also a center area, we have 9 areas. Working with two hexagons would give you 1 or 13 areas. Obviously, adding a third square or hexagon will not achieve 10 areas, so you can stop here. ------ If you overlap 3 hexagons you get 3 sections that are unique to each hexagon 1 section in the middle that is part of each hexagon 3 sections that are shared between only 2 hexagons Those 7 are straightforward - I drew 3 hexagons in powerpoint to visualize it The last 3 are a matter of interpretation, but they are there. it depends on what is meant by "distinct." There are an additional 3 sections that are made up of the outlines of the 3 sections that shared between only two hexagons plus the section in the middle. That gets you to 10. My 2 cents is that this is a poorly worded question because the answer could be 7 or 10 depending on the interpretation of distinct.

Related questions

There are 7*4 + 8*6 = 28 + 48 = 76 sides.

A hexagon has six sides, so seven hexagons will have 6 * 7 = 42 sides.

there is 7 hexagons in the design

7 of them.

equilateral and isoceles triangles, squares, rectangles and hexagons. equilateral and isoceles triangles, squares, rectangles and hexagons. * * * * * ALL triangle and ALL quadrilaterals will tessellate. There are 15 pentagons as well as 3 convex hexagons which will tessellate. No polygon with 7 or more sides will tessellate.

A heptagon has seven sides and a quadrilateral has four, so 1 heptagon and 3 quadrilaterals have 1*7 + 3*4 = 7 + 12 = 19 sides altogether.

A plane can be tessellated by triangles, various quadrilaterals, 15 types of convex pentagons (latest discovered in 2015) and various hexagons. No convex polynomial with 7 or more sides will tessellate.

All triangles will tessellate. All quadrilaterals will tessellate There are 15 classes of convex pentagons (the latest discovered in 2015) which will tessellate. Regular hexagons will tessellate. In addition, there are 3 classes of irregular convex hexagons which will tessellate. No convex polygon with 7 or more sides will tessellate.

There is no general relationship.All triangles will tessellate. All quadrilaterals will tessellate There are 15 classes of convex pentagons (the latest discovered in 2015) which will tessellate. Regular hexagons will tessellate. In addition, there are 3 classes of irregular convex hexagons which will tessellate. No convex polygon with 7 or more sides will tessellate.

All triangles will tessellate. All quadrilaterals will tessellate There are 15 classes of convex pentagons (the latest discovered in 2015) which will tessellate. Regular hexagons will tessellate. In addition, there are 3 classes of irregular convex hexagons which will tessellate. No convex polygon with 7 or more sides will tessellate.

All triangles will tessellate. All quadrilaterals will tessellate There are 15 classes of convex pentagons (the latest discovered in 2015) which will tessellate. Regular hexagons will tessellate. In addition, there are 3 classes of irregular convex hexagons which will tessellate. No convex polygon with 7 or more sides will tessellate.

No. No shape with 7 or more sides will tessellate with multiple copies of itself. All traigles and quadrilaterals will tessellate, there are 14 irregular pentagons (the last was discovered in 2016), and a number of hexagons - including the regular hexagon.