Infinitely many. The solution space is part of a plane.
Infinitely many.
2
A bivariate linear inequality.
A system of linear equations can only have: no solution, one solution, or infinitely many solutions.
There is no equation (or inequality) in the question and so there cannot be any solutions.
Infinitely many.
Infinite.
Inequalities tend to have infinitely many solutions.
The area in the inequality gives you choices. Like the number of pounds that an elevator can carry is anything less than its maximum.
A solution to a linear inequality in two variables is an ordered pair (x, y) that makes the inequality a true statement. The solution set is the set of all solutions to the inequality. The solution set to an inequality in two variables is typically a region in the xy-plane, which means that there are infinitely many solutions. Sometimes a solution set must satisfy two inequalities in a system of linear inequalities in two variables. If it does not satisfy both inequalities then it is not a solution.
A linear inequality is a mathematical statement that relates a linear expression to a value using inequality symbols such as <, >, ≤, or ≥. It represents a range of values for which the linear expression holds true, often depicted graphically as a shaded region on one side of a line in a coordinate plane. Unlike linear equations, which have exact solutions, linear inequalities define a set of possible solutions. For example, the inequality (2x + 3 < 7) indicates that any value of (x) that satisfies this condition is part of the solution set.
The shaded region above or below the line in the graph of a linear inequality is called the solution region. This region represents all the possible values that satisfy the inequality. Points within the shaded region are solutions to the inequality, while points outside the shaded region are not solutions.
Graphing a linear equation in two variables results in a straight line, representing all the solutions that satisfy the equation, while graphing a linear inequality produces a region on one side of the line that includes all the solutions satisfying the inequality. The line itself is solid if the inequality is ≤ or ≥, indicating that points on the line are included, or dashed if the inequality is < or >, indicating that points on the line are not included. Additionally, the area shaded represents all the combinations of values that satisfy the inequality, contrasting with the single line for an equation.
2
Although there are similarities, the solutions to a linear equation comprise all points on one line: a one-dimensional object. The solutions to a linear inequality comprise all points on one side [or the other] of a line: a two-dimensional object.
Yes, and no. The solution set to an inequality are those points which satisfy the inequality. A linear inequality is one in which no variable has a power greater than 1. Only if there are two variables will the solution be points in a plane; if there are more than two variables then the solution set will be points in a higher space, for example the solution set to the linear inequality x + y + z < 1 is a set of points in three dimensional space.
A bivariate linear inequality.