answersLogoWhite

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

How many times does a 60cm pendulum swing in a minute?

A 60cm pendulum will make 53 swings in one minute. The formula to calculate this is: number of swings = (60 / 1.18) * 60.


What are the period and frequency of a pendulum?

The period of a pendulum is the time it takes for one full swing (from one side to the other and back). The frequency of a pendulum is the number of full swings it makes in one second. The period and frequency of a pendulum are inversely related - as the period increases, the frequency decreases, and vice versa.


If a pendulum swings back and forth in 3 seconds what is its frequency?

The frequency of the pendulum is 1/3 Hz, as frequency is the number of complete cycles (swings) per second. Since it completes one cycle every 3 seconds, the frequency is the reciprocal of the time period, which is 1/3 Hz.


If not pushed why does the pendulum not go as high when it swings back?

The pendulum swings back lower because of the conservation of energy. As the pendulum swings to one side, it converts potential energy to kinetic energy. When it swings back, it loses some energy to friction and air resistance, causing it to not go as high as before.


How fast does a pendulum swing?

The speed at which a pendulum swings depends on the length of the pendulum and the acceleration due to gravity. The time it takes for one complete swing (from one side to the other and back) is called the period, and it is typically around 1-2 seconds for a regular pendulum.


What is the amplitude of a pendulum and how does it affect its motion?

The amplitude of a pendulum is the maximum angle it swings away from its resting position. It affects the motion of the pendulum by determining how far it swings back and forth. A larger amplitude means the pendulum swings further, while a smaller amplitude results in a shorter swing. The amplitude also influences the period of the pendulum, which is the time it takes to complete one full swing.


What is second pendulum?

Second's pendulum is the one which has 2 second as its Time period.


Adduction describes what motion?

The motion will not be effected. If you build a pendulum in your garage that swings with a period of one second, then bring it on a train, it will again swing with a period of one second, provided the train moves uniformly.


How can one determine the amplitude of a pendulum?

The amplitude of a pendulum can be determined by measuring the maximum angle the pendulum swings away from its resting position. This angle represents the maximum displacement of the pendulum from its equilibrium position.


Does changing the mass of the pendulum affect the number of swings?

The mass of the pendulum does not significantly affect the number of swings. The period (time taken for one complete swing) of a pendulum depends on the length of the pendulum and the acceleration due to gravity. The mass only influences the amplitude of the swing.


Which length of the pendulum made the most number of swing?

The length of the pendulum that made the most number of swings is the longest one. Longer pendulums have a longer period of oscillation, allowing them to swing back and forth more times before coming to a stop.


How do the mass of a pendulum affect the numbers of swings?

The mass of a pendulum does not affect the number of swings it makes in a given time period. The mass of the pendulum affects the period of its swing (the time it takes to complete one full cycle). The length of the pendulum and the force of gravity are the main factors that determine the number of swings it makes per unit time.