22
12.
(10 million seconds) / (86,400 seconds per day) = 115days 17hours 46minutes40seconds
100 seconds
To calculate how long 8 minutes is you should take seconds and multiply it with 8 that would be............ 480
about.... 90 seconds
There's no relationship between the length of the pendulum and the number of swings.However, a shorter pendulum has a shorter period, i.e. the swings come more often.So a short pendulum has more swings than a long pendulum has in the same amountof time.
The shorter pendulum has the shorter period.
The period of a pendulum can be calculated using the equation T = 2π√(l/g), where T is the period in seconds, l is the length of the pendulum in meters, and g is the acceleration due to gravity (9.81 m/s^2). Substituting the values, the period of a 0.85m long pendulum is approximately 2.43 seconds.
The mass of a pendulum does not affect the number of swings it makes in a given time period. The mass of the pendulum affects the period of its swing (the time it takes to complete one full cycle). The length of the pendulum and the force of gravity are the main factors that determine the number of swings it makes per unit time.
A complete back and forth vibration, also known as a full oscillation, for a pendulum with a period of 1.5 seconds would take a total time of 3 seconds. This time includes both the movement to one side and back to the starting point.
First take the average of your times:(12.6 + 12.7 + 12.5 + 12.6 + 12.7) / 5 = 12.62This is your average time for 20 oscillations. The period is the time for one oscillation, and therefore the period is 12.62/20 = 0.631 seconds.A complete oscillation is when the pendulum swings from the start position to the opposite position on the swing and back again. Assuming this is what you counted twenty of, then your pendulum is 10 cm long.If you counted 20 swings to each side, then you really only counted 10 oscillations. This means that your period would be 1.262, and would suggest that your pendulum is 40cm long.
swinging pendulum has potential energy at each end of it's travel (when it stops momentarily) This energy is converted to kinetic energy as it swings down and back to potential energy as it swings up the other way. Hope this helps you . If the pendulum is long enough it can use the relative motion of the earth's rotation to store just enough energy to maintain a continuous swing.
Mine swings for 23.11 seconds.
12.
A pendulum will swing back and forth indefinitely as long as it has enough energy to overcome friction and air resistance. The number of swings will depend on factors such as the length of the pendulum and the initial force used to set it in motion.
The pendulum of a clock is the long weighted bar that swings back and forth in the case below the clock. It was discovered several hundred years ago that the time it takes for one swing of a particular pendulum is constant, no matter how big or small the swing is. It can, therefore, be used to measure time.
The pendulum of a clock is the long weighted bar that swings back and forth in the case below the clock. It was discovered several hundred years ago that the time it takes for one swing of a particular pendulum is constant, no matter how big or small the swing is. It can, therefore, be used to measure time.