4 rectangles
30 squares within a 1 unit grid. 30 squares in all: 4*4 square: 1 3*3 squares: 4 2*2 squares: 9 1*1 squares: 16
You really should do your own homework - this is a question designed to make you analyse number patterns and devise a method to predict the answer that can be applied to grids of differing size. If we start with a square cut into a 3x3 grid, we can count the nine single (1x1) squares in the grid, the one 3x3 square, and then four 2x2* squares, making a total of 14. Try it out, then work your way up to 6x6 (a 36 square grid) by way of 4x4 and 5x5, looking to see how the grid's dimensions correlate to the number of varying-sized squares that can be counted. As a tip- in a 6x6 grid, you will have one 6x6 square, thirty-six 1x1 squares, and how many 2x2, 3x3, 4x4, and 5x5 squares? *The squares can overlap, obviously.
Actually, there is more than 81 squares. SQUARE SIZES Multiplication to do: 1x1=81 ---> 9x9 2x2=64 ---> 8x8 3x3=49 ---> 7x7 4x4=36 ---> 6x6 5x5=25 ---> 5x5 6x6=16 ---> 4x4 7x7=9 ---> 3x3 8x8=4 ---> 2x2 9x9=1 ---> 1x1 now add up all products or amount of squares for each size.....and you get? 285!!! there are 285 squares inn a 9x9 grid.
16 Answer #2 It is 16 if you just count the 1 x 1 squares but the 16 squares also form a 4x4 square. There are also 2x2 squares and 3x3 squares in the pattern. 16 1x1 squares 9 2x2 squares 4 3x3 squares 1 4x4 square 30 squares (possibly more?)
4X4
96 rectangles.
4 rectangles
30 squares within a 1 unit grid. 30 squares in all: 4*4 square: 1 3*3 squares: 4 2*2 squares: 9 1*1 squares: 16
isosceles as in (3x3) + (4x4) = (5x5) 9 + 16 = 25
isosceles as in (3x3) + (4x4) = (5x5) 9 + 16 = 25
3, 5, 5 does not make a right angle triangle but they can make an isosceles triangle Correct. Try 3,4,5. That will be a right triangle. 3x3 plus 4x4 = 5x5
You really should do your own homework - this is a question designed to make you analyse number patterns and devise a method to predict the answer that can be applied to grids of differing size. If we start with a square cut into a 3x3 grid, we can count the nine single (1x1) squares in the grid, the one 3x3 square, and then four 2x2* squares, making a total of 14. Try it out, then work your way up to 6x6 (a 36 square grid) by way of 4x4 and 5x5, looking to see how the grid's dimensions correlate to the number of varying-sized squares that can be counted. As a tip- in a 6x6 grid, you will have one 6x6 square, thirty-six 1x1 squares, and how many 2x2, 3x3, 4x4, and 5x5 squares? *The squares can overlap, obviously.
Infinitely many, but only 30 squares within a 1 unit grid. 4*4 square: 1 3*3 squares: 4 2*2 squares: 9 1*1 squares: 16
Actually, there is more than 81 squares. SQUARE SIZES Multiplication to do: 1x1=81 ---> 9x9 2x2=64 ---> 8x8 3x3=49 ---> 7x7 4x4=36 ---> 6x6 5x5=25 ---> 5x5 6x6=16 ---> 4x4 7x7=9 ---> 3x3 8x8=4 ---> 2x2 9x9=1 ---> 1x1 now add up all products or amount of squares for each size.....and you get? 285!!! there are 285 squares inn a 9x9 grid.
8x8=64(1x1)7x7=49(2x2)6x6=36(3x3)5x5=25(4x4)4x4=16(5x5)3x3=9 (6x6)2x2=4 (7x7)1x1=1 (8x8)64+49+36+25+16+9+4+1=204Total=204
16 Answer #2 It is 16 if you just count the 1 x 1 squares but the 16 squares also form a 4x4 square. There are also 2x2 squares and 3x3 squares in the pattern. 16 1x1 squares 9 2x2 squares 4 3x3 squares 1 4x4 square 30 squares (possibly more?)