It would be an obtuse triangle with one angle being greater than 90 degrees.
False. It can't be.In a right triangle, the sum of the squares of the two short sides is equal to the squareof the longest side.122 = 144152 = 225-------------sum = 369202 = 400, not 369.So these are not the sides of a right triangle.
Correct.
the Pythagorean Theorem
pythagorean theorem.
There is no such right triangle. You have defined the relationship between three sides of a triangle that does not have a 90 degree angle. In a right triangle the sum of the squares of the shorter sides equals the square of the longest side and 12 + 22 = 5 ; 42 = 16 it does not equal 5 The angles in a triangle with sides 1, 2, 4 units can be found by applying the cosine rule.
Yes, that's correct. In a triangle, if the square of the length of the longest side is less than the sum of the squares of the lengths of the other two sides, it indicates that all angles in the triangle are less than 90 degrees. This condition defines an acute triangle, where each angle is acute. Conversely, if the longest side squared equals the sum of the squares of the other two sides, the triangle is right-angled, and if it's greater, the triangle is obtuse.
They are straight lines. The sum of the squares of the lengths of the two shorter sides is equal to the square of the length of the longest side. But subject to that constraint, the sides can have any lengths.They are straight lines. The sum of the squares of the lengths of the two shorter sides is equal to the square of the length of the longest side. But subject to that constraint, the sides can have any lengths.They are straight lines. The sum of the squares of the lengths of the two shorter sides is equal to the square of the length of the longest side. But subject to that constraint, the sides can have any lengths.They are straight lines. The sum of the squares of the lengths of the two shorter sides is equal to the square of the length of the longest side. But subject to that constraint, the sides can have any lengths.
There's an infinite list of 3-number sets that can be the lengths of the sides of aright triangle. The only fact that's true of all of them is:(square of the length of the longest side) = (sum of the squares of the lengths of the other two sides.)
Yes
false In order for this to be a right triangle, the sum of the squares of the two shorter sides would have to equal the square of the longest side. 102=100 242= 576 272=729 102+242= 676, which does not equal 272=729, so a triangle with these lengths is not a right triangle.
Yes. The three sides uniquely specify the triangle. If all three sides are equal it is equilateral. If only two are equal it is isosceles. If none are equal it is scalene. If the sum of the squares of the two shorter lengths is equal to the square of the longest length, it is a right angled triangle. If the sum of the squares on the two shorter sides is less than the square on the longest, it is an obtuse angled triangle. Otherwise it is an acute triangle.
A hypotenuse is the longest side of a right angled triangle. The length of a hypotenuse can be found using the Pythagorean Theorem. This states that in a right angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the other two sides. This means that to find the length of the hypotenuse, you need to know the lengths of the other two sides.
False. It can't be.In a right triangle, the sum of the squares of the two short sides is equal to the squareof the longest side.122 = 144152 = 225-------------sum = 369202 = 400, not 369.So these are not the sides of a right triangle.
Yes
Correct.
A triangle is right triangle if square of the longest side is equal to sum of squares of other two sides. Square of 24 = 576 Sum of square of 9 and 21 = 92 + 212 = 81 + 441 = 522 576 ≠522. It is clear that triangle is not a right triangle.
The side across from the right angle in a right triangle is called the hypotenuse. It is the longest side of the triangle and is opposite the right angle. According to the Pythagorean theorem, the square of the hypotenuse's length is equal to the sum of the squares of the lengths of the other two sides.