No. Multiplication of matrices is, in general, non-commutative, due to the way multiplication is defined.
Chat with our AI personalities
That is interesting
Sometimes . . A+
The answer depends on the context. For example, multiplication of numbers is commutative (A*B = B*A) but multiplication of matrices is not.
The Abelian or commutative property of the multiplication of numbers. It is important that both "multiplication" and "numbers" feature in the answer. Because, it is applicable to multiplication but not, for example, for division. It is applicable for the multiplication on numbers but not matrices.
The commutative property works for adding and multiplying e.g. 2+4=4+2 and 3x4=4x3. But it doesn't work for subtraction and division so 5-3≠3-5 and 6÷2≠2÷6 so subtraction and division could be considered as exceptions.
It is so too equal! Multiplication is commutative. Unless A and B are matrices. Matrix multiplication is NOT commutative. Whether or not AxB = BxA depends upon the definition of the binary operator x [multiply] in the domain over which it is defined.