1stColor(139,0,0)
2ndColor(139,139,139)
ScaleZ(510)
ScaleY(560)
ScaleX(920)
<p>
c(27,224,63)
p(10,-23,61)
p(10,-20,61)
p(10,-20,-61)
p(10,-23,-61)
</p>
<p>
c(27,224,63)
gr(30)
p(10,-20,61)
p(10,18,61)
p(10,18,57)
p(10,-20,57)
</p>
<p>
c(27,224,63)
p(10,-10,57)
p(10,0,57)
p(10,0,-57)
p(10,-10,-57)
</p>
<p>
c(0,0,0)
gr(30)
p(10,-20,57)
p(10,-10,57)
p(10,-10,36)
p(10,-20,36)
</p>
<p>
c(0,0,0)
gr(30)
p(10,-20,33)
p(10,-10,33)
p(10,-10,13)
p(10,-20,13)
</p>
<p>
c(0,0,0)
p(10,-20,10)
p(10,-10,10)
p(10,-10,-10)
p(10,-20,-10)
</p>
<p>
c(0,0,0)
gr(30)
p(10,-20,-13)
p(10,-10,-13)
p(10,-10,-34)
p(10,-20,-34)
</p>
<p>
c(0,0,0)
gr(30)
p(10,-20,-37)
p(10,-10,-37)
p(10,-10,-57)
p(10,-20,-57)
</p>
<p>
c(0,0,0)
p(10,0,57)
p(10,10,57)
p(10,10,36)
p(10,0,36)
</p>
<p>
c(0,0,0)
p(10,0,33)
p(10,10,33)
p(10,10,13)
p(10,0,13)
</p>
<p>
c(0,0,0)
p(10,0,10)
p(10,10,10)
p(10,10,-10)
p(10,0,-10)
</p>
<p>
c(0,0,0)
p(10,0,-13)
p(10,10,-13)
p(10,10,-34)
p(10,0,-34)
</p>
<p>
c(0,0,0)
p(10,0,-37)
p(10,10,-37)
p(10,10,-57)
p(10,0,-57)
</p>
<p>
c(27,224,63)
gr(30)
p(10,-20,36)
p(10,-10,36)
p(10,-10,33)
p(10,-20,33)
</p>
<p>
c(27,224,63)
p(10,-20,13)
p(10,-10,13)
p(10,-10,10)
p(10,-20,10)
</p>
<p>
c(27,224,63)
p(10,-20,-10)
p(10,-10,-10)
p(10,-10,-13)
p(10,-20,-13)
</p>
<p>
c(27,224,63)
gr(30)
p(10,-20,-34)
p(10,-10,-34)
p(10,-10,-37)
p(10,-20,-37)
</p>
<p>
c(27,224,63)
p(10,0,36)
p(10,10,36)
p(10,10,33)
p(10,0,33)
</p>
<p>
c(27,224,63)
p(10,0,13)
p(10,10,13)
p(10,10,10)
p(10,0,10)
</p>
<p>
c(27,224,63)
p(10,0,-10)
p(10,10,-10)
p(10,10,-13)
p(10,0,-13)
</p>
<p>
c(27,224,63)
p(10,0,-34)
p(10,10,-34)
p(10,10,-37)
p(10,0,-37)
</p>
<p>
c(27,224,63)
gr(30)
p(10,-20,-57)
p(10,18,-57)
p(10,18,-61)
p(10,-20,-61)
</p>
<p>
c(27,224,63)
p(10,18,-44)
p(10,23,-47)
p(10,23,-61)
p(10,18,-61)
</p>
<p>
c(27,224,63)
p(10,10,57)
p(10,18,57)
p(10,18,-57)
p(10,10,-57)
</p>
<p>
c(27,224,63)
p(10,18,44)
p(10,23,47)
p(10,23,61)
p(10,18,61)
</p>
<p>
c(27,224,63)
p(10,18,35)
p(10,23,33)
p(10,23,-33)
p(10,18,-35)
</p>
// Mirror of the 26 polygons above along the X axis:
<p>
c(27,224,63)
p(-10,-23,61)
p(-10,-20,61)
p(-10,-20,-61)
p(-10,-23,-61)
</p>
<p>
c(27,224,63)
p(-10,-20,61)
p(-10,18,61)
p(-10,18,57)
p(-10,-20,57)
</p>
<p>
c(27,224,63)
p(-10,-10,57)
p(-10,0,57)
p(-10,0,-57)
p(-10,-10,-57)
</p>
<p>
c(0,0,0)
gr(30)
p(-10,-20,57)
p(-10,-10,57)
p(-10,-10,36)
p(-10,-20,36)
</p>
<p>
c(0,0,0)
gr(30)
p(-10,-20,33)
p(-10,-10,33)
p(-10,-10,13)
p(-10,-20,13)
</p>
<p>
c(0,0,0)
p(-10,-20,10)
p(-10,-10,10)
p(-10,-10,-10)
p(-10,-20,-10)
</p>
<p>
c(0,0,0)
gr(30)
p(-10,-20,-13)
p(-10,-10,-13)
p(-10,-10,-34)
p(-10,-20,-34)
</p>
<p>
c(0,0,0)
gr(30)
p(-10,-20,-37)
p(-10,-10,-37)
p(-10,-10,-57)
p(-10,-20,-57)
</p>
<p>
c(0,0,0)
p(-10,0,57)
p(-10,10,57)
p(-10,10,36)
p(-10,0,36)
</p>
<p>
c(0,0,0)
p(-10,0,33)
p(-10,10,33)
p(-10,10,13)
p(-10,0,13)
</p>
<p>
c(0,0,0)
p(-10,0,10)
p(-10,10,10)
p(-10,10,-10)
p(-10,0,-10)
</p>
<p>
c(0,0,0)
p(-10,0,-13)
p(-10,10,-13)
p(-10,10,-34)
p(-10,0,-34)
</p>
<p>
c(0,0,0)
gr(30)
p(-10,0,-37)
p(-10,10,-37)
p(-10,10,-57)
p(-10,0,-57)
</p>
<p>
c(27,224,63)
p(-10,-20,36)
p(-10,-10,36)
p(-10,-10,33)
p(-10,-20,33)
</p>
<p>
c(27,224,63)
p(-10,-20,13)
p(-10,-10,13)
p(-10,-10,10)
p(-10,-20,10)
</p>
<p>
c(27,224,63)
p(-10,-20,-10)
p(-10,-10,-10)
p(-10,-10,-13)
p(-10,-20,-13)
</p>
<p>
c(27,224,63)
p(-10,-20,-34)
p(-10,-10,-34)
p(-10,-10,-37)
p(-10,-20,-37)
</p>
<p>
c(27,224,63)
p(-10,0,36)
p(-10,10,36)
p(-10,10,33)
p(-10,0,33)
</p>
<p>
c(27,224,63)
p(-10,0,13)
p(-10,10,13)
p(-10,10,10)
p(-10,0,10)
</p>
<p>
c(27,224,63)
p(-10,0,-10)
p(-10,10,-10)
p(-10,10,-13)
p(-10,0,-13)
</p>
<p>
c(27,224,63)
p(-10,0,-34)
p(-10,10,-34)
p(-10,10,-37)
p(-10,0,-37)
</p>
<p>
c(27,224,63)
p(-10,-20,-57)
p(-10,18,-57)
p(-10,18,-61)
p(-10,-20,-61)
</p>
<p>
c(27,224,63)
p(-10,18,-44)
p(-10,23,-47)
p(-10,23,-61)
p(-10,18,-61)
</p>
<p>
c(27,224,63)
p(-10,10,57)
p(-10,18,57)
p(-10,18,-57)
p(-10,10,-57)
</p>
<p>
c(27,224,63)
p(-10,18,44)
p(-10,23,47)
p(-10,23,61)
p(-10,18,61)
</p>
<p>
c(27,224,63)
p(-10,18,35)
p(-10,23,33)
p(-10,23,-33)
p(-10,18,-35)
</p>
// End of mirror
<p>
c(27,224,63)
p(10,18,-61)
p(10,23,-61)
p(-10,23,-61)
p(-10,18,-61)
</p>
<p>
c(27,224,63)
lightB
p(10,12,-61)
p(10,18,-61)
p(7,18,-61)
p(7,12,-61)
</p>
<p>
c(27,224,63)
lightB
p(-10,12,-61)
p(-10,18,-61)
p(-7,18,-61)
p(-7,12,-61)
</p>
<p>
c(27,224,63)
p(7,12,-61)
p(7,18,-61)
p(-7,18,-61)
p(-7,12,-61)
</p>
<p>
c(27,224,63)
p(10,10,-61)
p(10,12,-61)
p(-10,12,-61)
p(-10,10,-61)
</p>
<p>
c(0,0,0)
p(7,0,-61)
p(7,10,-61)
p(-7,10,-61)
p(-7,0,-61)
</p>
<p>
c(27,224,63)
p(10,0,-61)
p(10,10,-61)
p(7,10,-61)
p(7,0,-61)
</p>
<p>
c(27,224,63)
p(-10,0,-61)
p(-10,10,-61)
p(-7,10,-61)
p(-7,0,-61)
</p>
<p>
c(27,224,63)
p(10,0,-61)
p(10,-10,-61)
p(-10,-10,-61)
p(-10,0,-61)
</p>
<p>
c(0,0,0)
p(7,-19,-61)
p(7,-10,-61)
p(-7,-10,-61)
p(-7,-19,-61)
</p>
<p>
c(27,224,63)
p(10,-19,-61)
p(10,-10,-61)
p(7,-10,-61)
p(7,-19,-61)
</p>
<p>
c(27,224,63)
p(-10,-19,-61)
p(-10,-10,-61)
p(-7,-10,-61)
p(-7,-19,-61)
</p>
<p>
c(27,224,63)
p(10,-23,-61)
p(10,-19,-61)
p(-10,-19,-61)
p(-10,-23,-61)
</p>
// Mirror of the 9 polygons above along the Z axis:
<p>
c(27,224,63)
p(10,10,61)
p(10,12,61)
p(-10,12,61)
p(-10,10,61)
</p>
<p>
c(0,0,0)
p(7,0,61)
p(7,10,61)
p(-7,10,61)
p(-7,0,61)
</p>
<p>
c(27,224,63)
p(10,0,61)
p(10,10,61)
p(7,10,61)
p(7,0,61)
</p>
<p>
c(27,224,63)
p(-10,0,61)
p(-10,10,61)
p(-7,10,61)
p(-7,0,61)
</p>
<p>
c(27,224,63)
p(10,0,61)
p(10,-10,61)
p(-10,-10,61)
p(-10,0,61)
</p>
<p>
c(0,0,0)
p(7,-19,61)
p(7,-10,61)
p(-7,-10,61)
p(-7,-19,61)
</p>
<p>
c(27,224,63)
p(10,-19,61)
p(10,-10,61)
p(7,-10,61)
p(7,-19,61)
</p>
<p>
c(27,224,63)
p(-10,-19,61)
p(-10,-10,61)
p(-7,-10,61)
p(-7,-19,61)
</p>
<p>
c(27,224,63)
p(10,-23,61)
p(10,-19,61)
p(-10,-19,61)
p(-10,-23,61)
</p>
// End of mirror
<p>
c(27,224,63)
p(10,12,61)
p(10,18,61)
p(7,18,61)
p(7,12,61)
</p>
<p>
c(27,224,63)
p(-10,12,61)
p(-10,18,61)
p(-7,18,61)
p(-7,12,61)
</p>
<p>
c(255,255,255)
lightF
p(2,16,61)
p(2,18,61)
p(7,18,61)
p(7,16,61)
</p>
<p>
c(27,224,63)
lightF
p(-2,16,61)
p(-2,18,61)
p(-7,18,61)
p(-7,16,61)
</p>
<p>
c(27,224,63)
p(7,12,61)
p(7,16,61)
p(-7,16,61)
p(-7,12,61)
</p>
<p>
c(27,224,63)
p(10,18,61)
p(10,23,61)
p(-10,23,61)
p(-10,18,61)
</p>
<p>
c(27,224,63)
p(2,16,61)
p(2,18,61)
p(-2,18,61)
p(-2,16,61)
</p>
<p>
c(27,224,63)
p(-10,-23,61)
p(10,-23,61)
p(10,-23,-61)
p(-10,-23,-61)
</p>
<p>
c(130,130,130)
gr(30)
p(10,23,33)
p(-10,23,33)
p(-10,23,-33)
p(10,23,-33)
</p>
<p>
c(130,130,130)
gr(30)
p(10,23,-33)
p(-10,23,-33)
p(-10,18,-33)
p(10,18,-33)
</p>
<p>
c(130,130,130)
gr(30)
p(10,18,-33)
p(-10,18,-33)
p(-10,18,-44)
p(10,18,-44)
</p>
<p>
c(130,130,130)
gr(30)
p(10,18,-44)
p(-10,18,-44)
p(-10,23,-47)
p(10,23,-47)
</p>
// Mirror of the 3 polygons above along the Z axis:
<p>
c(130,130,130)
gr(30)
p(10,23,33)
p(-10,23,33)
p(-10,18,35)
p(10,18,35)
</p>
<p>
c(130,130,130)
gr(30)
p(10,18,35)
p(-10,18,35)
p(-10,18,44)
p(10,18,44)
</p>
<p>
c(130,130,130)
gr(30)
p(10,18,44)
p(-10,18,44)
p(-10,23,47)
p(10,23,47)
</p>
// End of mirror
<p>
c(130,130,130)
gr(30)
p(10,23,-47)
p(-10,23,-47)
p(-10,23,-61)
p(10,23,-61)
</p>
<p>
c(130,130,130)
gr(30)
p(10,23,47)
p(-10,23,47)
p(-10,23,61)
p(10,23,61)
</p>
physics(50,12,50,62,50,0,0,90,10,12,12,94,50,56,4,8330)
handling(76)
gwgr(40)
rims(140,140,140,18,10)
w(-8,20,40,11,35,20)
w(8,20,40,11,-35,20)
gwgr(40)
rims(140,140,140,18,10)
w(-8,20,-40,0,35,20)
w(8,20,-40,0,-35,20)
stat(120,104,129,165,162)
Yes, "madness" is a common noun. Common nouns are general names for people, places, things, or ideas. In this case, "madness" is a general term used to describe a state of being mentally ill or insane, and it does not refer to any specific person, place, or thing.
No. Mad is an adjective. The associated noun is madness.
The noun form for the adjective mad is madness.
The abstract noun for "mad" is "madness." It refers to the state of being mad, encompassing ideas of insanity, irrationality, or extreme excitement. This term captures the essence of the emotion or condition without referencing a specific instance or individual.
It need not have any.It need not have any.It need not have any.It need not have any.
Ann Codee was born on March 5, 1890, in Antwerp, Antwerp, Belgium.
Ann Codee died on May 18, 1961, in Hollywood, California, USA of heart attack.
when will be need for madness multiplayer will be able to download
Its a remake of the first need for madness game . i can wait for it to come out. here is the link to the first NFM http:/www.radicalplay.com/madness/jvm.html
yes and Need for Madness 2 is out as well! NFM multiplayer is coming out next...
Need for madness 2 should be coming out about June 12.
All you do is go on pirate bay and type in need for madness 2
you go to Google type in need for madness 2 download and research where it is and download
because NFM 2 just came out
Need For Madness' Multiplayer mode was launched on October 20th 2011.
the answer cannot be answered. I've played need for madness but don't know the name of the songs.
Need for madness is truly a unique game, however, there are other "wasting" games