3 x 2 x 4 = 24 (3 x 2) x 4 = 6 x 4 = 24 3 x (2 x 4) = 3 x 8 = 24 2 x (3 x 4) = 2 x 12 = 24
2 x 2 x 2 x 2 x 3 x 3 2 x 2 x 2 x 2 x 9 2 x 2 x 3 x 3 x 4 2 x 2 x 36 2 x 4 x 18 2 x 2 x 2 x 3 x 6 2 x 2 x 4 x 9 2 x 8 x 9 2 x 2 x 3 x 12 4 x 4 x 9 4 x 6 x 6 3 x 3 x 16 3 x 4 x 12 2 x 6 x 12 3 x 3 x 4 x 4 2 x 3 x 24
3lnx - ln2=4 lnx^3 - ln2=4 ln(x^3/2)=4 (x^3)/2=e^4 x^3=2e^4 x=[2e^4]^(1/3)
Question: 2 x 3 x 4 Answer: It's easier to break this down into separate parts. First, multiply 2 x 3 = 6 Then multiply 6 (which is 2 x 3) x 4 = 24 Therefore, 2 x 3 x 4 = 24
x2 + x + 1 = 0 ∴ x2 + x + 1/4 = -3/4 ∴ (x + 1/2)2 = -3/4 ∴ x + 1/2 = ± √(-3/4) ∴ x = - 1/2 ± (i√3) / 2 ∴ x = (-1 ± i√3) / 2
3x - 2y + 7x + 4y = 3x + 7x - 2y +4y = (3+7)x + (-2+4)y = 10x + 2y
1/10 x 25 is 2 1/2 or 2.5
3 x 2 x 4 = 24 (3 x 2) x 4 = 6 x 4 = 24 3 x (2 x 4) = 3 x 8 = 24 2 x (3 x 4) = 2 x 12 = 24
2^4 x 3^4 = (2^2)^2 x (3^2)^2 = 2^2 x 3^2 x 2^2 x 3^2 = 2^4 x 3^4 Therefore 2^4 x 3^4 is the exponential form
2 x 2 x 2 x 2 x 3 x 3 2 x 2 x 2 x 2 x 9 2 x 2 x 3 x 3 x 4 2 x 2 x 36 2 x 4 x 18 2 x 2 x 2 x 3 x 6 2 x 2 x 4 x 9 2 x 8 x 9 2 x 2 x 3 x 12 4 x 4 x 9 4 x 6 x 6 3 x 3 x 16 3 x 4 x 12 2 x 6 x 12 3 x 3 x 4 x 4 2 x 3 x 24
2/3 x 2/3 = 4/9.2/3 x 2/3 = 4/9.2/3 x 2/3 = 4/9.2/3 x 2/3 = 4/9.
2 x 18 3 x 12 4 x 9 6 x 6 2 x 2 x 3 x 3 2 x 3 x 6 3 x 3 x 4 2 x 2 x 9 2 x 24 3 x 16 4 x 12 6 x 8 2 x 2 x 2 x 2 x 3 2 x 3 x 8 2 x 2 x 12 2 x 2 x 3 x 4 2 x 4 x 6 3 x 4 x 4 2 x 2 x 2 x 6
A.) j(a) = a^2 - 2a + 4 B.) j(3) = (3)^2 - 2(3) + 4 = 9 - 6 + 4 = 7 C.) j(x^2) = (x^2)^2 - 2(x^2) + 4 = x^4 - 2x^3 + 4 D.) j(x+3) = (x + 3)^2 - 2(x + 3) + 4 = x^2 +6x + 9 - 2x - 6 + 4 = x^2 + 4x + 7 E.) j(x+h) = (x + h)^2 - 2(x + h) + 4 = x^2 + 2hx + h^2 - 2x - 2h + 4
2 x 2 x 2 x 2 x 3 x 3 2 x 8 x 9 2 x 2 x 4 x 9 2 x 2 x 2 x 2 x 9 2 x 2 x 2 x 3 x 6 2 x 3 x 4 x 6 3 x 3 x 4 x 4 3 x 3 x 16
(x^2+x-1/2)= x(x+1)-1/2 [x + (1 - square root of 3)/2][x + (1 + square root of 3)/2] = 0 Check it: x^2 + x/2 + (square root of 3)x)/2 + x/2 + 1/4 + (square root of 3)/4 - (square root of 3)x/2 - (square root of 3)/4 - 3/4 = 0 x^2 + x/2 + x/2 + [(square root of 3)x]/2 - [(square root of 3)x]/2 + (square root of 3)/4 - (square root of 3)/4 + 1/4 - 3/4 = 0 x^2 + x - 2/4 = 0 x^2 + x - 1/2 = 0 How to find this roots: Using the completing the square method: x^2 + x - 1/2 = 0 x^2 + x = 1/2 x^2 + x + 1/4 = 1/2 + 1/4 (x + 1/2)^2 = 3/4 x + 1/2 = (plus & minus)(square root of 3/4) x = -1/2 + (square root of 3)/2 x = - 1/2 - (square root of 3)/2
12. (6 x 2, 4 x 3 and 3 x 4)
1 = (1 + 4) ÷ (2 + 3) 2 = 4 - 3 + 2 - 1 3 = (4 + 3 - 1) ÷ 2 4 = (4 + 3 + 1) ÷ 2 5 = (4 x 2 - 3) x 1 6 = 4 + 3 - 2 + 1 7 = (4 + 3) x (2 - 1) 8 = 4 + 3 + 2 - 1 9 = 4 + 3 + 2 x 1 10 = 4 + 3 + 2 + 1 11 = 4 x 2 + 3 x 1 12 = 4 x 3 x (2 - 1) 13 = 3 x 4 + 2 - 1 14 = 3 x 4 + 2 x 1 15 = 3 x 4 + 2 + 1