answersLogoWhite

0

Square root of -1 is mathematically represented by the IMAGINARY NUMBER i.

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: The s r of - 1 is an you n?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

How do you find the sum of an infinite geometric series?

An infinite geometric series can be summed only if the common ratio has an absolute value less than 1. Suppose the sum to n terms is S(n). That is, S(n) = a + ar + ar2 + ... + arn-1 Multipying through by the common ratio, r, gives r*S(n) = ar + ar2 + ar3 + ... + arn Subtracting the second equation from the first, S(n) - r*S(n) = a - arn (1 - r)*S(n) = a*(1 - rn) Dividing by (1 - r), S(n) = (1 - rn)/(1 - r) Now, since |r| < 1, rn tends to 0 as n tends to infinity and so S(n) tends to 1/(1 - r) or, the infinite sum is 1/(1 - r)


With this radical n equals S r exponent-2 solve for r?

sqrt(n) = S*r2sqrt(n)/S = r2 sqrt(sqrt(n)/S) = ror4th root of n/sqrt(S) = r.If your equation was sqrt(n) = S*r-2sqrt(n) = S*(1/r2)sqrt(n)/S = 1/r2S/sqrt(n) = r2 sqrt(S/sqrt[n]) = rorsqrt(S)/4th root of n = r


Prove that nCr plus nCr minus 1 equals n plus 1Cr?

nCr + nCr-1 = n!/[r!(n-r)!] + n!/[(r-1)!(n-r+1)!] = n!/[(r-1)!(n-r)!]*{1/r + 1/n-r+1} = n!/[(r-1)!(n-r)!]*{[(n-r+1) + r]/[r*(n-r+1)]} = n!/[(r-1)!(n-r)!]*{(n+1)/r*(n-r+1)]} = (n+1)!/[r!(n+1-r)!] = n+1Cr


Factor this expression mr ns - nr - ms?

I am guessing there is a missing plus sign and you want to factor mr + ns - nr - ms. If so , mr -ms + ns - nr = m(r - s) - n( r -s ) = (r - s) (m - n)


1 plus r raised to power n equals?

Binomial Theorem: 1n + nC1*1n-1*r + nC2*1n-2*r2+......+nCn-1*1*rn-1 + rn Or (1+r)n = 1 + n*r + n(n-1)/2! * r2 + n(n-1)(n-2)/3! * r3 + .......... n(n-1)...(n-k)/k! * rk if n < 1 as you cannot calculate the combinations that easily. This gives an accurate approximation provided that abs(x) < 1.