Although there is no graph, the number of solutions is 0.
A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.
If you refer to linear equations, graphed as straight lines, two inconsistent equations would result in two parallel lines.
A system of linear equations can only have: no solution, one solution, or infinitely many solutions.
Yes.
Equations with the same solution are called dependent equations, which are equations that represent the same line; therefore every point on the line of a dependent equation represents a solution. Since there is an infinite number of points on a line, there is an infinite number of simultaneous solutions. For example, 2x + y = 8 4x + 2y = 16 These equations are dependent. Since they represent the same line, all points that satisfy either of the equations are solutions of the system. A system of linear equations is consistent if there is only one solution for the system. A system of linear equations is inconsistent if it does not have any solutions.
2
When a system of linear equations is graphed, each equation is represented by a straight line on the coordinate plane. The solutions to each equation correspond to all the points on that line. The intersection points of the lines represent the solutions to the entire system; if the lines intersect at a point, that point is the unique solution. If the lines are parallel, there are no solutions, and if they overlap, there are infinitely many solutions.
The set of points the graphed equations have in common. This is usually a single point but the lines can be coincident in which case the solution is a line or they can be parallel in which case there are no solutions to represent.
A system of equations means that there are more than one equations. The answer depends on the exact function(s).
To find the solution of two equations graphed on a coordinate plane, look for the point where the two lines intersect. This point represents the values of the variables that satisfy both equations simultaneously. The coordinates of this intersection point are the solution to the system of equations. If the lines are parallel, there is no solution; if they are the same line, there are infinitely many solutions.
Yes, a system of linear equations can have zero solutions, which is known as an inconsistent system. This occurs when the equations represent parallel lines that never intersect, meaning there is no point that satisfies all equations simultaneously. A common example is the system represented by the equations (y = 2x + 1) and (y = 2x - 3), which are parallel and thus have no solutions.
A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.
It means that the equations are actually both the same one. When they're graphed, they both turn out to be the same line.
If you refer to linear equations, graphed as straight lines, two inconsistent equations would result in two parallel lines.
To determine the number of solutions for a system of equations, one would typically analyze the equations' characteristics—such as their slopes and intercepts in the case of linear equations. If the equations represent parallel lines, there would be no solutions; if they intersect at a single point, there is one solution; and if they are identical, there would be infinitely many solutions. Without specific equations, it's impossible to provide a definitive number of solutions.
When two lines intersect, the system of equations has exactly one solution. This solution corresponds to the point of intersection, where both equations are satisfied simultaneously. If the lines are parallel, there would be no solutions, and if they coincide, there would be infinitely many solutions.
If a system of equations is inconsistent, there are no solutions.