Yes, a system of linear equations can have zero solutions, which is known as an inconsistent system. This occurs when the equations represent parallel lines that never intersect, meaning there is no point that satisfies all equations simultaneously. A common example is the system represented by the equations (y = 2x + 1) and (y = 2x - 3), which are parallel and thus have no solutions.
Any system of linear equations can have the following number of solutions: 0 if the system is inconsistent (one of the equations degenerates to 0=1) 1 if the system is linearly independent infinity if the system has free variables and is not inconsistent.
A system of two linear equations in two unknowns can have three possible types of solutions: exactly one solution (when the lines intersect at a single point), no solutions (when the lines are parallel and never intersect), or infinitely many solutions (when the two equations represent the same line). Thus, there are three potential outcomes for such a system.
False. There can either be zero, one, or infinite solutions to a system of two linear equations.
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
It means that there is no set of values for the variables such that all the linear equations are simultaneously true.
A system of linear equations can only have: no solution, one solution, or infinitely many solutions.
Any system of linear equations can have the following number of solutions: 0 if the system is inconsistent (one of the equations degenerates to 0=1) 1 if the system is linearly independent infinity if the system has free variables and is not inconsistent.
As there is no system of equations shown, there are zero solutions.
False. There can either be zero, one, or infinite solutions to a system of two linear equations.
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
It means that there is no set of values for the variables such that all the linear equations are simultaneously true.
A.infinitely manyB.oneD.zero
Yes.
1
Yes, a system can, in fact, have exactly two solutions.
They are a set of equations in two unknowns such that any term containing can contain at most one of the unknowns to the power 1. A system of linear equations can have no solutions, one solution or an infinite number of solutions.
The system of equations can have zero solutions, one solution, two solutions, any finite number of solutions, or an infinite number of solutions. If it is a system of LINEAR equations, then the only possibilities are zero solutions, one solution, and an infinite number of solutions. With linear equations, think of each equation describing a straight line. The solution to the system of equations will be where these lines intersect (a point). If they do not intersect at all (or maybe two of the lines intersect, and the third one doesn't) then there is no solution. If the equations describe the same line, then there will be infinite solutions (every point on the line satisfies both equations). If the system of equations came from a real world problem (like solving for currents or voltages in different parts of a circuit) then there should be a solution, if the equations were chosen properly.