answersLogoWhite

0

If we are considering spheres of dimension d then the following argument shows that the VC dimension of these spheres cannot be more than O(d2). Notice that the equation of a sphere is a quadratic equation and has (d+1)2 coefficients. Lets work in R2 for clarity - any sphere looks like s(x,y) = ax2+bxy+cy2+dx+ey+f = 0 and a point (x,y) is in the sphere if s(x,y) < 0 and outside if s(x,y) > 0.

Now simply interpret this situation in a 5 dimensional space with a new set of coordinates X,Y,Z,V,W. Simply make a change of coordinates X = x2, Y = xy, Z = y2, V = x, W = y. In this new space the old quadratic equation simply looks like a hyperplane ! Since the VD dimension of d-dimensional hyperplanes is d+1, we realize that the spheres in d-dimensions are no more powerful than hyperplanes in O(d2) dimensions and hence have a VC dimension of O(d2).

I do not know if this argument can be tightened.

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: VC-dimension for spheres
Write your answer...
Submit
Still have questions?
magnify glass
imp