The rules for identifying significant figures when writing or interpreting numbers are as follows:
All non-zero digits are considered significant. For example, 91 has two significant figures (9 and 1), while 123.45 has five significant figures (1, 2, 3, 4 and 5).
Zeros appearing anywhere between two non-zero digits are significant. Example: 101.1203 has seven significant figures: 1, 0, 1, 1, 2, 0 and 3.
Leading zeros are not significant. For example, 0.00052 has two significant figures: 5 and 2.
Trailing zeros in a number containing a decimal point are significant. For example, 12.2300 has six significant figures: 1, 2, 2, 3, 0 and 0. The number 0.000122300 still has only six significant figures (the zeros before the 1 are not significant). In addition, 120.00 has five significant figures since it has three trailing zeros.
Use the rules of significant figures to answer the following : 22.674 * 15.05. Answer: 341.2
You count the number of figures from left to right starting with the first number different from 0. Example: 205 has 3 significant figures 0.0000205 has 3 significant figures 0.000020500000 has 8 significant figures
The least number of significant figures in any number of the problem determines the number of significant figures in the answer which in this case is 270.9
rules for calculating S.F. are: 1,all non zero digits r significant 2,
The least number of significant figures in any number of the problem determines the number of significant figures in the answer which in this case is 270.9
Use the rules of significant figures to answer the following : 22.674 * 15.05. Answer: 341.2
There are some rules for finding significant figures. here there is a problem how many significant figures in 8.00. here in 8.00 have three significant figures. Because after decimal point they may have zeros. but we have to take this as significant figures. There are some rules for finding significant figures. here there is a problem how many significant figures in 8.00. here in 8.00 have three significant figures. Because after decimal point they may have zeros. but we have to take this as significant figures. there are three significant figures because three decimals points these question answering from anjaneyulu
Four significant figures. Review you rules for significant figures. Some chemistry teachers, especially at the college level, are very concerned with significant figures.
You count the number of figures from left to right starting with the first number different from 0. Example: 205 has 3 significant figures 0.0000205 has 3 significant figures 0.000020500000 has 8 significant figures
Type your answer here...
The least number of significant figures in any number of the problem determines the number of significant figures in the answer which in this case is 270.9
rules for calculating S.F. are: 1,all non zero digits r significant 2,
The least number of significant figures in any number of the problem determines the number of significant figures in the answer which in this case is 270.9
The least number of significant figures in any number of the problem determines the number of significant figures in the answer which in this case is 656.64
One of the rules of significant figures is that leading zeros are not significant; therefore, 0.00034 will only have TWO significant figures (3 and 4).
1. All non-zero digits are significant. For example, 295 has three significant figures. 2. Leading zeroes in front of a decimal are not significant. For example 0.295 has three significant figures. 3. Zeroes between other significant figures are significant. For example 2095 has four significant figures. 4. Trailing zeroes after a decimal are significant. For example 295.0 has four significant figures. And 2950 has three significant figures because the trailing zero does not occur after a decimal.
The least number of significant figures in any number of the problem determines the number of significant figures in the answer which in this case is 273.8