Best Answer

The multiples of 2 between 1 and 50 are numbers that can be divided evenly by 2. In this range, the multiples of 2 are 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, and 48. These numbers are obtained by multiplying 2 by integers starting from 1 until the result exceeds 50.

Q: What are the multiples of 2 between 1 to 50?

Write your answer...

Submit

Still have questions?

Continue Learning about Other Math

42, 45, 48.

All the multiples of 4 are also multiples of 2.

4/6/8/10

the greatest common factor is 50. 50 x 1 = 50. 50 x 2 = 100. there's no limit to the multiples, it is infinite.

Assuming you mean that you want the number of multiples of each, then for 1-100: number of multiples of 2 = 50 number of multiples of 3 = 33 number of multiples of 4 = 25 number of multiples of 6 = 16 number of multiples of 8 = 12 number of multiples of 9 = 11 Assuming you mean that you want the numbers that are multiples of 2, 3, 4, 6, 8 or 9, then some numbers may be multiples of more than one (for example 12 is a multiple of 2, 3, 4 and 6) and so a straight addition of the number of multiples of each cannot be done: Consider 2, 4 and 8 Every multiple of 4 or 8 is also a multiple of 2, so all the multiples of 4 and 8 are counted by the multiples of 2. Consider 3 and 9 Every multiple of 9 is also a multiple of 3, so all the multiples of 9 are counted by the multiple of 3 Consider 2, 3 and 6. Every multiple of 6 is an even multiple of 3, so are counted in both the multiples of 2 and 3. So the total number of multiples of 2, 3, 4, 6, 8 or 9 is the number of multiples of 2 plus the number of multiples of 3 minus the number of multiples of 6: For 1 to 100, Number of multiples of 2 = 50 Number of multiples of 3 = 33 Number of multiples of 6 = 16 So number of multiples of 2, 3, 4, 6, 8 or 9 in 1-100 is 50+33-16 = 67. Assuming you mean that they are multiples of all of 2, 3, 4, 6, 8 and 9, then they must be multiples of the lowest common multiple of 2, 3, 4, 6 ,8, 9 2 = 21, 3 = 31, 4 = 22, 6 = 2131, 8 = 23, 9 = 32 LCM = highest power of the primes used = 2332 = 72 Thus all numbers that are multiples of 2, 3, 4, 6, 8 and 9 are multiples of 72, which means between 1 and 100 only 1 number is a multiple of all of them, namely 72

Related questions

There are four multiples of 11 between 1 and 50 (2-49): 11, 22, 33, 44.

yes the multiples of 50 are 1, 2, 5, 10, 25 and 50

The factors are 1, 2, 5, 10, 25, and 50. There are an infinite number of multiples starting with 50, 100, 150, 200, 250, 300, etc.

All the multiples of 4 are also multiples of 2.

2, they are 4 and 8.

4/6/8/10

the greatest common factor is 50. 50 x 1 = 50. 50 x 2 = 100. there's no limit to the multiples, it is infinite.

4 and 8 are multiples of 2. 6 and 9 are multiples of 3. 40 and 50 are multiples of 10.

There are an infinite number of multiples of 100. 100, 200, 300,400, ....

Write out the numbers 1 to 50 in 5 rows. Cross out 1. Start at 2 and cross out multiples of 2. That would eliminate all the rest of the even numbers. Go to the next uncrossed-out number (3) and cross out all of its multiples. Some of them will already be crossed out. You can stop by the time you get to eight. All of the uncrossed-out numbers are prime.

52, 54, 56, and 58 are multiples of 2. 51, 54 and 57 are multiples of 3. 52 and 56 are multiples of 4.

Assuming you mean that you want the number of multiples of each, then for 1-100: number of multiples of 2 = 50 number of multiples of 3 = 33 number of multiples of 4 = 25 number of multiples of 6 = 16 number of multiples of 8 = 12 number of multiples of 9 = 11 Assuming you mean that you want the numbers that are multiples of 2, 3, 4, 6, 8 or 9, then some numbers may be multiples of more than one (for example 12 is a multiple of 2, 3, 4 and 6) and so a straight addition of the number of multiples of each cannot be done: Consider 2, 4 and 8 Every multiple of 4 or 8 is also a multiple of 2, so all the multiples of 4 and 8 are counted by the multiples of 2. Consider 3 and 9 Every multiple of 9 is also a multiple of 3, so all the multiples of 9 are counted by the multiple of 3 Consider 2, 3 and 6. Every multiple of 6 is an even multiple of 3, so are counted in both the multiples of 2 and 3. So the total number of multiples of 2, 3, 4, 6, 8 or 9 is the number of multiples of 2 plus the number of multiples of 3 minus the number of multiples of 6: For 1 to 100, Number of multiples of 2 = 50 Number of multiples of 3 = 33 Number of multiples of 6 = 16 So number of multiples of 2, 3, 4, 6, 8 or 9 in 1-100 is 50+33-16 = 67. Assuming you mean that they are multiples of all of 2, 3, 4, 6, 8 and 9, then they must be multiples of the lowest common multiple of 2, 3, 4, 6 ,8, 9 2 = 21, 3 = 31, 4 = 22, 6 = 2131, 8 = 23, 9 = 32 LCM = highest power of the primes used = 2332 = 72 Thus all numbers that are multiples of 2, 3, 4, 6, 8 and 9 are multiples of 72, which means between 1 and 100 only 1 number is a multiple of all of them, namely 72