Details may vary depending on the equation. Quite often, you have to square both sides of the equation, to get rid of the radical sign. It may be necessary to rearrange the equation before doing this, after doing this, or both. Squaring both sides of the equation may introduce "extraneous" roots (solutions), that is, solutions that are not part of the original equation, so you have to check each solution of the second equation, to see whether it is also a solution of the first equation.
There is no equality symbol in the question and so no equation!
It often helps to isolate the radical, and then square both sides. Beware of extraneous solutions - the new equation may have solutions that are not part of the solutions of the original equation, so you definitely need to check any purported solutions with the original equation.
It often helps to square both sides of the equation (or raise to some other power, such as to the power 3, if it's a cubic root).Please note that doing this may introduce additional solutions, which are not part of the original equation. When you square an equation (or raise it to some other power), you need to check whether any solutions you eventually get are also solutions of the original equation.
The property that is essential to solving radical equations is being able to do the opposite function to the radical and to the other side of the equation. This allows you to solve for the variable. For example, sqrt (x) = 125.11 [sqrt (x)]2 = (125.11)2 x = 15652.5121
The answer is....... 1. read the problem 2. determine the unknowns and represent them 3. write an equation 4. solve the equation 5. answer the question
The first step is produce the radical equation that needs solving.
There is no equality symbol in the question and so no equation!
Radical...Apex :)
The 1st step would be to give an example of the equation to be solved.
A radical equation is an equation that contains a variable inside a radical, such as a square root or a cube root. Solving radical equations involves isolating the radical term and then squaring both sides of the equation to eliminate the radical. It is important to check for extraneous solutions when solving radical equations.
It often helps to isolate the radical, and then square both sides. Beware of extraneous solutions - the new equation may have solutions that are not part of the solutions of the original equation, so you definitely need to check any purported solutions with the original equation.
no. an individual step might be, but not all.
The 1st step would have been to show a particular quadratic equation in question.
That depends on the equation; you need to give some examples of what you want factored. There are four steps to solving an equation. Should any other factors be accounted for when solving an equation? Should any factors be accounted for when explaining how to solve an equation?
Yes, but it depends on your mathematical skills and confidence.
The answer will depend very much on the nature of the equation. The steps required for a one-step equation are very different from the steps required for a partial differential equation. For some equations there are no straightforward analytical methods of solution: only numerical methods.
1. Given 2. Find 3. Equation 4. Solution