sqrt(80/45) = sqrt(16/9) = sqrt(16)/sqrt(9) = 4/3 sqrt(80/45) = sqrt(16/9) = sqrt(16)/sqrt(9) = 4/3 sqrt(80/45) = sqrt(16/9) = sqrt(16)/sqrt(9) = 4/3 sqrt(80/45) = sqrt(16/9) = sqrt(16)/sqrt(9) = 4/3
sqrt(12)*2*sqrt(18)*sqrt(24) = sqrt(4*3)*2*sqrt(2*9)*sqrt(4*2*3) = sqrt(4)*sqrt(3)*2*sqrt(2)*sqrt(9)*sqrt(4)*sqrt(2)*sqrt(3) = 2*sqrt(3)*2*sqrt(2)*3*2*sqrt(2)*sqrt(3) = 24*sqrt(2)*sqrt(2)*sqrt(3)*sqrt(3) = 24*2*3 = 144
Yes, it is. sqrt(a+b)=sqrt(b+a) sqrt(a) times sqrt(b) = sqrt(b) times sqrt(a)
sqrt(300n11) = sqrt(100n10*3n) = sqrt(100n10)*Sqrt(3n) = 10n5*sqrt(3n)
sqrt(24x4) / sqrt(3x) = sqrt(24x4/3x) = sqrt(8x3) = sqrt(2x times 4x2) = 2x sqrt(2x) or (2x)1.5
\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}\sqrt{38}
sqrt(72) = sqrt(36*2) = sqrt(36)*sqrt(2) = 6*sqrt(2).sqrt(72) = sqrt(36*2) = sqrt(36)*sqrt(2) = 6*sqrt(2).sqrt(72) = sqrt(36*2) = sqrt(36)*sqrt(2) = 6*sqrt(2).sqrt(72) = sqrt(36*2) = sqrt(36)*sqrt(2) = 6*sqrt(2).
sqrt(1^2 + 1^2 ) = sqrt(2)sqrt(sqrt(2)^2 + 1^2 ) = sqrt(3)sqrt(sqrt(3)^2 + 1^2 ) = sqrt(4)sqrt(sqrt(4)^2 + 1^2 ) = sqrt(5)sqrt(sqrt(5)^2 + 1^2 ) = sqrt(6)sqrt(sqrt(6)^2 + 1^2 ) = sqrt(7)sqrt(sqrt(7)^2 + 1^2 ) = sqrt(8)sqrt(sqrt(8)^2 + 1^2 ) = sqrt(9)sqrt(sqrt(9)^2 + 1^2 ) = sqrt(10)sqrt(sqrt(10)^2 + 1^2 ) = sqrt(11)sqrt(sqrt(11)^2 + 1^2 ) = sqrt(12)sqrt(sqrt(12)^2 + 1^2 ) = sqrt(13)sqrt(sqrt(13)^2 + 1^2 ) = sqrt(14)sqrt(sqrt(14)^2 + 1^2 ) = sqrt(15)sqrt(sqrt(15)^2 + 1^2 ) = sqrt(16)sqrt(sqrt(16)^2 + 1^2 ) = sqrt(17)
sqrt(50) = sqrt(25*2) = sqrt(25)*sqrt(2) = 5*sqrt(2)3*sqrt(8) = 3*sqrt(4*2) = 3*sqrt(4)*sqrt(2) = 3*2*sqrt(2) = 6*sqrt(2).sqrt(50) = sqrt(25*2) = sqrt(25)*sqrt(2) = 5*sqrt(2)3*sqrt(8) = 3*sqrt(4*2) = 3*sqrt(4)*sqrt(2) = 3*2*sqrt(2) = 6*sqrt(2).sqrt(50) = sqrt(25*2) = sqrt(25)*sqrt(2) = 5*sqrt(2)3*sqrt(8) = 3*sqrt(4*2) = 3*sqrt(4)*sqrt(2) = 3*2*sqrt(2) = 6*sqrt(2).sqrt(50) = sqrt(25*2) = sqrt(25)*sqrt(2) = 5*sqrt(2)3*sqrt(8) = 3*sqrt(4*2) = 3*sqrt(4)*sqrt(2) = 3*2*sqrt(2) = 6*sqrt(2).
The question is ambiguous because it could refer to [sqrt(A2B) + sqrt(AB2)]/sqrt(AB) = [A*sqrt(B) + B*sqrt(A)]/[sqrt(A)*sqrt(B)] = A/sqrt(A) + B/sqrt(B) = sqrt(A) + sqrt(B) or sqrt(A2B) + sqrt(AB2)/sqrt(AB) = A*sqrt(B) + B*sqrt(A)/[sqrt(A)*sqrt(B)] = A*sqrt(B) + B/sqrt(B) = A*sqrt(B) + sqrt(B) = sqrt(B)*(1 + A)
sqrt(a2 + a2) = sqrt(2a2) = sqrt(2)*sqrt(a2) = sqrt(2)*asqrt(a2 + a2) = sqrt(2a2) = sqrt(2)*sqrt(a2) = sqrt(2)*asqrt(a2 + a2) = sqrt(2a2) = sqrt(2)*sqrt(a2) = sqrt(2)*asqrt(a2 + a2) = sqrt(2a2) = sqrt(2)*sqrt(a2) = sqrt(2)*a
12 sqrt(6)-12sqrt(12) = 12 [sqrt(6)-sqrt(12)] sqrt(6)=sqrt(2x3) = sqrt(2) x sqrt(3) sqrt(12)=sqrt(22x3) = sqrt(22) x sqrt(3) = 2 sqrt(3) sqrt(6) - sqrt(12) = sqrt(2) x sqrt(3) - 2 sqrt(3) = sqrt(3) [sqrt(2)-2] So 12 sqrt(6)-12sqrt(12) = 12 sqrt(3) [sqrt(2)-2]
sqrt(80/45) = sqrt(16/9) = sqrt(16)/sqrt(9) = 4/3 sqrt(80/45) = sqrt(16/9) = sqrt(16)/sqrt(9) = 4/3 sqrt(80/45) = sqrt(16/9) = sqrt(16)/sqrt(9) = 4/3 sqrt(80/45) = sqrt(16/9) = sqrt(16)/sqrt(9) = 4/3
sqrt(12)*2*sqrt(18)*sqrt(24) = sqrt(4*3)*2*sqrt(2*9)*sqrt(4*2*3) = sqrt(4)*sqrt(3)*2*sqrt(2)*sqrt(9)*sqrt(4)*sqrt(2)*sqrt(3) = 2*sqrt(3)*2*sqrt(2)*3*2*sqrt(2)*sqrt(3) = 24*sqrt(2)*sqrt(2)*sqrt(3)*sqrt(3) = 24*2*3 = 144
2*sqrt(0.5 + 0.25*sqrt(2)) + 2i*sqrt(0.5 - 0.25*sqrt(2)) -2*sqrt(0.5 - 0.25*sqrt(2)) + 2i*sqrt(0.5 + 0.25*sqrt(2)) -2*sqrt(0.5 + 0.25*sqrt(2)) - 2i*sqrt(0.5 - 0.25*sqrt(2)) 2*sqrt(0.5 - 0.25*sqrt(2)) - 2i*sqrt(0.5 + 0.25*sqrt(2))
sqrt(5) + sqrt(45) = sqrt(5) + sqrt(9*5) = sqrt(5) + sqrt(9)*sqrt(5) = sqrt(5) + 3*sqrt(5) = 4*sqrt(5)
Yes, it is. sqrt(a+b)=sqrt(b+a) sqrt(a) times sqrt(b) = sqrt(b) times sqrt(a)