answersLogoWhite

0

Apart from the fact that there is no such word as verticle, there cannot be a solid that meets the above description.


According to the Euler characteristic, simply connected polyhedra must satisfy:

Faces + Vertices = Edges + 2



Apart from the fact that there is no such word as verticle, there cannot be a solid that meets the above description.


According to the Euler characteristic, simply connected polyhedra must satisfy:

Faces + Vertices = Edges + 2



Apart from the fact that there is no such word as verticle, there cannot be a solid that meets the above description.


According to the Euler characteristic, simply connected polyhedra must satisfy:

Faces + Vertices = Edges + 2



Apart from the fact that there is no such word as verticle, there cannot be a solid that meets the above description.


According to the Euler characteristic, simply connected polyhedra must satisfy:

Faces + Vertices = Edges + 2

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
More answers
Apart from the fact that there is no such word as verticle, there cannot be a solid that meets the above description.


According to the Euler characteristic, simply connected polyhedra must satisfy:

Faces + Vertices = Edges + 2

User Avatar

Wiki User

12y ago
User Avatar

Add your answer:

Earn +20 pts
Q: What figure has 4 faces 8 edges 5 verticles?
Write your answer...
Submit
Still have questions?
magnify glass
imp