answersLogoWhite

0


Best Answer

To divide by a complex number, write it as a fraction and then multiply the numerator and denominator by the complex conjugate of the denominator - this is formed by changing the sign of the imaginary bit of the number; when a complex number (a + bi) is multiplied by its complex conjugate the result is the real number a² + b² which can be divided into the complex number of the numerator:

(-4 - 3i) ÷ (4 + i)

= (-4 - 3i)/(4 + i)

= ( (-4 - 3i)×(4 - i) ) / ( (4 + i)×(4 - i) )

= (-16 + 4i - 12i + 3i²) / (4² + 1²)

= (-16 - 8i - 3) / (16 + 1)

= (-19 - 8i)/17

User Avatar

Wiki User

8y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

8y ago

The way you solve this is to multiply top and bottom by the complex conjugate of the denominator (bottom). In this case, the complex conjugate of 4+i is 4-i (just flip the sign of the imaginary part to get the complex conjugate), so you multiply top and bottom by 4-i, and do the calculations. This will let you cleanly separate the real and the imaginary part.When doing the calculations, remember that i squared = -1.

This answer is:
User Avatar

User Avatar

Wiki User

8y ago

It is (-19 - 11i)/17

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is -4-3i divided by 4 plus i?
Write your answer...
Submit
Still have questions?
magnify glass
imp