answersLogoWhite

0

Expanded Notation of 25,000,000 = (2 x 10^7) + (5 x 10^6) + (0 x 10^5) + (0 x 10^4) + (0 x 10^3) + (0 x 10^2) + (0 x 10^1) + (0 x 10^0)

User Avatar

Wiki User

8y ago

What else can I help you with?

Related Questions

When is the answer when 1294 is written in expanded notation using the powers of ten?

Expanded Notation of 1,294 = (1 x 103) + (2 x 102) + (9 x 101) + (4 x 100)


What is the answer when 1294 is written in expanded notation using the powers of ten?

Expanded Notation of 1,294 = (1 x 1,000) + (2 x 100) + (9 x 10) + (4 x 1)


How do you write 80 in expanded notation using the powers?

Expanded Notation of 80 = (8 x 101) + (0 x 100).


How do you write 525 in expanded notation with the powers of ten?

Expanded Notation of 525 = (5 x 102) + (2 x 101) + (5 x 100).


Write these expanded forms as power?

Expanded Notation written using the powers of 10 This is an extension of writing the equation in expanded notation! Therefore I will use the information from that to explain; First I'll do out a table showing powers 10^2 = 100 10 to the power of 2 is One Hundred (2 zero's-after the 1) So hopefully you see the pattern in the above table!


How do you write 456 in expanded notation using the powers of 10?

Expanded Notation of 456 = (4 x 102) + (5 x 101) + (6 x 100)


What is 5280 in expanded notation using powers of 10?

Expanded Notation of 5,280 = (5 x 10^3) + (2 x 10^2) + (8 x 10^1) + (0 x 10^0)


How do you write 2784 in expanded notation as the sum of multiplication expressions using powers of 10?

Expanded Notation of 2784 = (2 x 103) + (7 x 102) + (8 x 101) + (4 x 100).


How do you put 1760 in expanded notation using the powers of 10?

Expanded Notation of 1,760 = (1 x 10^3) + (7 x 10^2) + (6 x 10^1) + (0 x 10^0)


How is 60000 written using powers-of-ten notation?

6 x 104


What is 250000 in expanded notation using powers of ten?

In expanded notation using powers of ten, 250,000 can be expressed as (2 \times 10^5 + 5 \times 10^4 + 0 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 0 \times 10^0). Simplifying this, it becomes (2 \times 100,000 + 5 \times 10,000). Thus, the expanded form is (200,000 + 50,000).


How do your write 4768 in expanded notation as the sum of multiplication expressions using powers of ten?

(4 * 103) + (7 * 102) + (6 * 101) + (8 * 100).