7
1/[5 + 3*sqrt(2)] = [5 - 3*sqrt(2)]/{[5 + 3*sqrt(2)][5 - 3*sqrt(2)]} = [5 + 3*sqrt(2)]/[25 - 18] = [5 - 3*sqrt(2)]/7
11*sqrt(8) + 6*sqrt(12) - 5*sqrt(2) = 11*sqrt(4*2) + 6*sqrt(4*3) - 5*sqrt(2) = 11*sqrt(4)*sqrt(2) + 6*sqrt(4)*sqrt(3) - 5*sqrt(2) = 11*2*sqrt(2) + 6*2*sqrt(3) - 5*sqrt(2) = 22*sqrt(2) - 5*sqrt(2) + 12*sqrt(3) = 17*sqrt(2) + 12*sqrt(3) and that cannot be simplified further.
sqrt(12)*2*sqrt(18)*sqrt(24) = sqrt(4*3)*2*sqrt(2*9)*sqrt(4*2*3) = sqrt(4)*sqrt(3)*2*sqrt(2)*sqrt(9)*sqrt(4)*sqrt(2)*sqrt(3) = 2*sqrt(3)*2*sqrt(2)*3*2*sqrt(2)*sqrt(3) = 24*sqrt(2)*sqrt(2)*sqrt(3)*sqrt(3) = 24*2*3 = 144
sqrt(10x)*sqrt(8x) = sqrt(80x2) = sqrt(16x2*5) = sqrt(16x2)*sqrt(5) = 4x*sqrt(5)
Notice that 720 = (4 x 5 x 36)sqrt(720) = sqrt(4 times 5 times 36)= sqrt(4) times (sqrt(5) times sqrt(36)= (2) times sqrt(5) times (6)= 12 sqrt(5)
5*sqrt(5)/sqrt(2) = 5*sqrt(5/2) = 5*sqrt(2.5) = 7.91, approx.
=SQRT(5)*SQRT(2)+SQRT(8) is 5.99070478491457
7
Let say X=x2 Then x4-x2-1=X2-X-1 Delta (for X) = (-1)2 - 4 x 1 x -1 = 5 X2-X-1 = [X - (1 - sqrt(5))/2] [X - (1 + sqrt(5))/2] and as x2=X x4-x2-1 = [x2 - (1 - sqrt(5))/2] [x2 - (1 + sqrt(5))/2] as a2+b2=(a+ib)(a-ib) and a2-b2=(a-b)(a+b) x4-x2-1 = [x - sqrt((1 + sqrt(5))/2)] [x + sqrt((1 + sqrt(5))/2)] [x - i sqrt((1 - sqrt(5))/2)] [x + i sqrt((1 - sqrt(5))/2)] sqrt((1+sqrt(5))/2) = 1/2 sqrt(2+2 sqrt(5)) sqrt((1-sqrt(5))/2) = 1/2 i sqrt(-2+2 sqrt(5))
2 sqrt(6) - 5 sqrt(24) = 2 sqrt(6) - 5 sqrt(4 x 6) = 2 sqrt(6) - 5 sqrt(4) sqrt(6) =2 sqrt(6) - 5 x 2 sqrt(6) = 2 sqrt(6) - 10 sqrt(6) =-8 sqrt(6)
1/[5 + 3*sqrt(2)] = [5 - 3*sqrt(2)]/{[5 + 3*sqrt(2)][5 - 3*sqrt(2)]} = [5 + 3*sqrt(2)]/[25 - 18] = [5 - 3*sqrt(2)]/7
11*sqrt(8) + 6*sqrt(12) - 5*sqrt(2) = 11*sqrt(4*2) + 6*sqrt(4*3) - 5*sqrt(2) = 11*sqrt(4)*sqrt(2) + 6*sqrt(4)*sqrt(3) - 5*sqrt(2) = 11*2*sqrt(2) + 6*2*sqrt(3) - 5*sqrt(2) = 22*sqrt(2) - 5*sqrt(2) + 12*sqrt(3) = 17*sqrt(2) + 12*sqrt(3) and that cannot be simplified further.
By applying the conjugate. e.g. 6 / sqrt(2) = (6sqrt(2)) / (sqrt(2)*sqrt(2)) => (6sqrt(2)/ 2=> 3sqrt(2) The answer. Or a more complex calculation. ( 6 - sqrt(5)) / (2 - sqrt(3)) The conjugate is 2 + sqrt(3) ; Apply top and bottom. (6 - sqrt(5))(2 + sqrt(3)) / (2 - sqrt(5))(2 + sqrt(5)) We now use FOIL (Like multiplying two brackets together) . (12 -2sqrt(5) + 6 sqrt(3) - sqrt(15)) / (4 - 2sqrt(5) + 2 sqrt(5) - 5) ( 12 -2sqrt(5) + 6 sqrt(3) - sqrt(15)) / ( - 1) -12 + 2sqrt(5) - 6qrt3) + sqrt(15) This cannot be taken any further!!!! Hope that helps with division of radicals.
8*sqrt(36)*5*sqrt(54) = 8*6*5*sqrt(54) = 240*sqrt(54) = 720*sqrt(6)
sqrt(12)*2*sqrt(18)*sqrt(24) = sqrt(4*3)*2*sqrt(2*9)*sqrt(4*2*3) = sqrt(4)*sqrt(3)*2*sqrt(2)*sqrt(9)*sqrt(4)*sqrt(2)*sqrt(3) = 2*sqrt(3)*2*sqrt(2)*3*2*sqrt(2)*sqrt(3) = 24*sqrt(2)*sqrt(2)*sqrt(3)*sqrt(3) = 24*2*3 = 144
sqrt(10x)*sqrt(8x) = sqrt(80x2) = sqrt(16x2*5) = sqrt(16x2)*sqrt(5) = 4x*sqrt(5)