7.071067812
7
1/[5 + 3*sqrt(2)] = [5 - 3*sqrt(2)]/{[5 + 3*sqrt(2)][5 - 3*sqrt(2)]} = [5 + 3*sqrt(2)]/[25 - 18] = [5 - 3*sqrt(2)]/7
11*sqrt(8) + 6*sqrt(12) - 5*sqrt(2) = 11*sqrt(4*2) + 6*sqrt(4*3) - 5*sqrt(2) = 11*sqrt(4)*sqrt(2) + 6*sqrt(4)*sqrt(3) - 5*sqrt(2) = 11*2*sqrt(2) + 6*2*sqrt(3) - 5*sqrt(2) = 22*sqrt(2) - 5*sqrt(2) + 12*sqrt(3) = 17*sqrt(2) + 12*sqrt(3) and that cannot be simplified further.
sqrt(12)*2*sqrt(18)*sqrt(24) = sqrt(4*3)*2*sqrt(2*9)*sqrt(4*2*3) = sqrt(4)*sqrt(3)*2*sqrt(2)*sqrt(9)*sqrt(4)*sqrt(2)*sqrt(3) = 2*sqrt(3)*2*sqrt(2)*3*2*sqrt(2)*sqrt(3) = 24*sqrt(2)*sqrt(2)*sqrt(3)*sqrt(3) = 24*2*3 = 144
sqrt(10x)*sqrt(8x) = sqrt(80x2) = sqrt(16x2*5) = sqrt(16x2)*sqrt(5) = 4x*sqrt(5)
Here, with probably a lot more steps than required, is the answer: [2*sqrt(5)]*[4*sqrt(10)]=2*4*sqrt(5)*sqrt(10) = 8*sqrt(5)*sqrt(10) = 8*sqrt(5*10) = 8*sqrt(5*5*2) = 8*5*sqrt(2) = 40*sqrt(2)
Notice that 720 = (4 x 5 x 36)sqrt(720) = sqrt(4 times 5 times 36)= sqrt(4) times (sqrt(5) times sqrt(36)= (2) times sqrt(5) times (6)= 12 sqrt(5)
5*sqrt(5)/sqrt(2) = 5*sqrt(5/2) = 5*sqrt(2.5) = 7.91, approx.
The radical of 50 can be simplified by factoring it into its prime components: (50 = 25 \times 2 = 5^2 \times 2). Therefore, the square root of 50 can be expressed as (\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}). Thus, the simplified form of the radical of 50 is (5\sqrt{2}).
sqrt(2)*sqrt(75) = sqrt(2)*sqrt(3*25) = sqrt(2)*sqrt(3)*sqrt(25) = sqrt(2*3)*5 = 5*sqrt(6) = 12.247 approx.
The product of (\sqrt{2}) and (\sqrt{2}) is calculated as follows: (\sqrt{2} \times \sqrt{2} = \sqrt{2 \times 2} = \sqrt{4} = 2). Therefore, (\sqrt{2} \times \sqrt{2} = 2).
=SQRT(5)*SQRT(2)+SQRT(8) is 5.99070478491457
7
x*sqrt(2)/{5 - sqrt(3)} = {5 + sqrt(3)} => x*sqrt(2) = {5 + sqrt(3)} * {5 - sqrt(3)} = 25 - 3 = 22 => x = 22/sqrt(2) = 22*sqrt(2)/{sqrt(2)*sqrt(2)} = 22*sqrt(2)/2 = 11*sqrt(2)
Let say X=x2 Then x4-x2-1=X2-X-1 Delta (for X) = (-1)2 - 4 x 1 x -1 = 5 X2-X-1 = [X - (1 - sqrt(5))/2] [X - (1 + sqrt(5))/2] and as x2=X x4-x2-1 = [x2 - (1 - sqrt(5))/2] [x2 - (1 + sqrt(5))/2] as a2+b2=(a+ib)(a-ib) and a2-b2=(a-b)(a+b) x4-x2-1 = [x - sqrt((1 + sqrt(5))/2)] [x + sqrt((1 + sqrt(5))/2)] [x - i sqrt((1 - sqrt(5))/2)] [x + i sqrt((1 - sqrt(5))/2)] sqrt((1+sqrt(5))/2) = 1/2 sqrt(2+2 sqrt(5)) sqrt((1-sqrt(5))/2) = 1/2 i sqrt(-2+2 sqrt(5))
32
2 sqrt(6) - 5 sqrt(24) = 2 sqrt(6) - 5 sqrt(4 x 6) = 2 sqrt(6) - 5 sqrt(4) sqrt(6) =2 sqrt(6) - 5 x 2 sqrt(6) = 2 sqrt(6) - 10 sqrt(6) =-8 sqrt(6)