A negative correlation is when you compare 2 sets of data on a line graph (e.g. scores in a French test and scores in an English test), the higher one thing is, the lower the other is (e.g. someone might score 98% on the French test but only 12% on the English test (or visa versa)). A positive correlation is the other way around. A weak correlation is when there is a lot of deviation from the line of best fit (there will always be one with correlations as a line of best fit shows correlations after all) whereas with a strong correlation, there is little deviation.
Chat with our AI personalities
the negative sign on correlation just means that the slope of the Least Squares Regression Line is negative.
This means that the correlation is negative but still significant.
I believe you are asking how to identify a positive or negative correlation between two variables, for which you have data. I'll call these variables x and y. Of course, you can always calculate the correlation coefficient, but you can see the correlation from a graph. An x-y graph that shows a positive trend (slope positive) indicates a positive correlation. An x-y graph that shows a negative trend (slope negative) indicates a negative correlation.
a correlation on a graph is when the line of best fit is positive, negative or none.
Negative