After 13, it's 18.
The next number in the sequence is 18. It's +1, +2, +3, +4, ....
Dart Board
10,20,30,20
The next number in this sequence is 18. You're adding 1 to the difference of the previous two numbers. 4-3=1, 6-4=2 etc... so 18-13=5. The sequence is t(n) = 0.5*(n2 - n + 6) where n = 1, 2, 3, ... It is, of course, easy to find polynomials of order 3 or higher that would fit the sequence.
18 3 +1 4 +2 6 +3 9 +4 13 +5 18 +6 24 +7 31 +8 39 +9 48 +10 58...
18
The next number in the sequence is 18. It's +1, +2, +3, +4, ....
18
18
6 and 10
The nest number in the sequence is 18. Note that the difference between each number and the next number in the sequence follows the simple sequence of 1,2,3,4. Obviously the next in the sequence of increases is 5, so 13+5=18.
18. 3+1=4, 4+2=6, 6+3=9, 9+4=13, 13+5=18.
To find the next number in the sequence -5, -2, 4, 13, we can look at the differences between consecutive terms: -2 - (-5) = 3 4 - (-2) = 6 13 - 4 = 9 The differences are 3, 6, and 9, which increase by 3 each time. Following this pattern, the next difference should be 12. Therefore, adding 12 to the last term (13) gives us 25, making the next number in the sequence 25.
Dart Board
10,20,30,20
The rule for this sequence appears to be adding consecutive prime numbers. The sequence starts with 3, then adds the next prime number 2 to get 4. It then adds 3 (the next prime number) to 4 to get 7, then 5 to 7 to get 12, and so on. Each number in the sequence is the sum of the previous number and the next prime number in order.
The pattern alternates between two sequences: one decreasing by 1 (18, 13) and the other decreasing by 2 (4, 6). Following this pattern, the next number after 6 should be 3 (6 - 3), and the next number after 13 should be 12 (13 - 1). Thus, the next two numbers in the sequence are 12 and 3.