The monomial -2 has a degree of 0.
4x2y The degree of the monomial is 2.
4xyz
if the monomial is -4x3, then the coefficient is the number in front, so it is -4, thus false. 3 is the exponent, or degree.
5
2•2•2•5•p•q
The degree of a monomial is the sum of the exponents of its variables. For example, in the monomial (3x^2y^3), the degree is (2 + 3 = 5). If a monomial has no variables, such as the constant (7), its degree is considered to be (0).
4x2y The degree of the monomial is 2.
It is Eighteen
When finding the product of a monomial and a binomial, the degree of the resulting product is determined by adding the degree of the monomial to the highest degree of the terms in the binomial. Specifically, if the monomial has a degree (m) and the binomial has a highest degree (n), the degree of the product will be (m + n). Thus, the degree of the product is always the sum of the degrees of the monomial and the highest degree of the binomial.
A degree of a monomial is simply what exponent or power the monomial is raised to. Key: ^ means "raised to the power of" -5t^2 means the degree is 2, the number is -5, and the variable which is being put to the power of, is t. the degree has a little trick, however. If there are three monomials or more, being added or subtracted, to make a polynomial, and each has a degree (lone variable has a degree of 1) and the monomial that has the highest degree represnts the whole polynomial's degree.
False
The degree of a monomial is determined by the exponent of its variable. In the case of the monomial (-7x^4), the exponent of (x) is 4. Therefore, the degree of the monomial (-7x^4) is 4.
By definition, a monomial has only one unknown independent variable, usually represented by a letter of the alphabet. The exponent immediately after that symbol for the unknown is the degree of the monomial.
The degree of a monomial is the sum of the exponents of its variables. In the monomial (8xyz^3), the exponents are 1 for (x), 1 for (y), and 3 for (z). Adding these together gives (1 + 1 + 3 = 5). Therefore, the degree of the monomial (8xyz^3) is 5.
5 is the answer (:
10
The "degree" is only specified for polynomials. The degree of a monomial (a single term) is the sum of the powers of all the variables. For example, x3y2z would have the degree 6; you have to add 3 + 2 + 1 (since z is the same as z to the power 1). The degree of a polynomial is the degree of its highest monomial.