It is easiest to describe the difference in terms of coordinate geometry.
A linear equation defines a straight line in the coordinate plane. Every point on the line satisfies the equation and no other points do.
For a linear inequality, first consider the corresponding linear equality (or equation). That defines a straight line which divides the plane into two. Depending on the direction of the inequality, all points on one side of the line or the other satisfy the equation, and no point from the other side of the line does. If it is a strict inequality (< or >) then points on the line itself are excluded while if the inequality is not strict (≤or ≥) then points on the line are included.
There is no quadratic equation that is 'linear'. There are linear equations and quadratic equations. Linear equations are equations in which the degree of the variable is 1, and quadratic equations are those equations in which the degree of the variable is 2.
Linear equations or inequalities describe points x y that lie on a circle.
First degree equations ad inequalities in one variable are known as linear equations or linear inequalities. The one variable part means they have only one dimension. For example x=3 is the point 3 on the number line. If we write x>3 then it is all points on the number line greater than but not equal to 3.
All linear equations are functions but not all functions are linear equations.
Normally no. But technically, it is possible if the two linear equations are identical.
The solution of a system of linear equations consists of specific points where the equations intersect, typically yielding a unique point, infinitely many points, or no solution at all. In contrast, the solution of a system of linear inequalities represents a region in space, encompassing all points that satisfy the inequalities, often forming a polygonal shape in two dimensions. While equations define boundaries, inequalities define areas that can include multiple solutions. Thus, the nature of their solutions differs fundamentally: precise points versus expansive regions.
There is no quadratic equation that is 'linear'. There are linear equations and quadratic equations. Linear equations are equations in which the degree of the variable is 1, and quadratic equations are those equations in which the degree of the variable is 2.
There are many simple questions in everyday life that can be modelled by linear equations and solved using linear programming.
They are not. An inequality cannot, by definition, be the same as an equation.
To solve it by coordinate graphs you would take a point from the line and plug in the X and Y value into the equations and or inequalities.
Linear inequalities and linear equations are similar in that both involve linear expressions and use the same variables in a linear format. They can be represented graphically, where linear equations depict straight lines, while linear inequalities represent regions of the coordinate plane. Additionally, both types of mathematical statements can be solved using similar algebraic techniques, though solutions for inequalities often involve ranges of values rather than specific points. Ultimately, they both express relationships between variables, but inequalities include a relational aspect (greater than or less than) that equations do not.
Linear equations or inequalities describe points x y that lie on a circle.
Solving linear systems means to solve linear equations and inequalities. Then to graph it and describing it by statical statements.
Linear inequalities in two variables involve expressions that use inequality symbols (such as <, >, ≤, or ≥), while linear equations in two variables use an equality sign (=). The solution to a linear equation represents a specific line on a graph, while the solution to a linear inequality represents a region of the graph, typically shaded to show all the points satisfying the inequality. Moreover, linear inequalities allow for a range of values, whereas linear equations specify exact values for the variables.
Many problems in economics can be modelled by a system of linear equations: equalities r inequalities. Such systems are best solved using matrix algebra.
Linear has a slope direct does not but both go through the orgin
Inequalities have greater than, less than, greater than or equal to, or less than or equal to signs. Equations have an equal sign.