If you mean points of: (2, 1) and (14, 6) then the distance is 13
The distance between these two points is 23.
The distance between points: (9, 4) and (3, 4) is 6
Using the distance formula from (3, 1) to (7, 1) is 4 units
Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the plane. The Pythagorean Theorem, a2+b2=c2 a 2 + b 2 = c 2 , is based on a right triangle where a and b are the lengths of the legs adjacent to the right angle, and c is the length of the hypotenuse.
The absolute difference in the vertical direction is zero but the absolute difference in the horizontal direction will be the horizontal distance - which is the distance between the points.
The distance between these two points is 23.
If you mean points of (4, 5) and (10, 13) then the distance works out as 10
If you mean points of (5, 5) and (1, 5) then the distance is 4
Points: (2, 1) and (14, 6) Distance: 13
18 units
10 units
Distance between the points of (3, 7) and (15, 16) is 15 units
The distance between points: (9, 4) and (3, 4) is 6
Points: (2, 3) and (2, 7) Distance works out as: 4 units
If you mean points of (5, 5) and (1, 5) then the distance is 4
(Distance between the points)2 = (difference of the two x-values)2 + (difference of the two y-values)2
If you mean points of (-3, 1) and (-7, 1) then using the distance formula it is 10 units