Two.
It will cross the x-axis twice.
When the graph of a quadratic crosses the x-axis twice it means that the quadratic has two real roots. If the graph touches the x-axis at one point the quadratic has 1 repeated root. If the graph does not touch nor cross the x-axis, then the quadratic has no real roots, but it does have 2 complex roots.
No, it will be entirely above the x-axis if the coefficient of x2 > 0, or entirely below if the coeff is <0.
It will touch it at exactly 1 point. If a quadratic function is given as f(x) = ax2 + bx + c, let the discriminant be denoted as D. Then the graph of y = f(x) will cross the x-axis at the x-values x = (-b + sqrt(D))/(2a) and x = (-b - sqrt(D))/(2a). When the discriminant D = 0, these 2 x-values are actually the same. Thus the graph will touch the x-axis only once.
No. It depends on the function f.
It will cross the x-axis twice.
It will touch the x-axis and not cross it.
Once.
If the quadratic function is written as ax2 + bx + c then if a > 0 the function is cup shaped and if a < 0 it is cap shaped. (if a = 0 it is not a quadratic) if b2 > 4ac then the equation crosses the x-axis twice. if b2 = 4ac then the equation touches the x-axis (is a tangent to it). if b2 < 4ac then the equation does not cross the x-axis.
It will touch the x-axis once.
When the coefficient of ( x^2 ) is negative in a quadratic equation, the parabola opens downward. This means that the vertex of the parabola represents a maximum point, and the value of the function decreases on either side of the vertex. Consequently, the graph will touch or cross the x-axis at most twice, indicating that the quadratic can have zero, one, or two real roots.
When the graph of a quadratic crosses the x-axis twice it means that the quadratic has two real roots. If the graph touches the x-axis at one point the quadratic has 1 repeated root. If the graph does not touch nor cross the x-axis, then the quadratic has no real roots, but it does have 2 complex roots.
If the discriminant is negative, the equation has no real solution - in the graph, the parabola won't cross the x-axis.
It would not touch or intersect the x-axis at all.
-1 -18 -25 -7
No, it will be entirely above the x-axis if the coefficient of x2 > 0, or entirely below if the coeff is <0.
0 real solutions. There are other solutions in the complex planes (with i, the imaginary number), but there are no real solutions.