The rate of changing the interval of 25 is 19.5. This is a math problem.
Chat with our AI personalities
The rate of change equals the slope. In the basic formula y=mx+b, the rate of change is equal to m. In the equation y=5x+3, the rate of change equals 5.
I'm not sure I understand your question, but if the point (10,6) is plotted 2 squares to the right of the origin and 3 squares up, then the horizontal scale interval is 5 and the vertical scale interval is 2. Each horizontal space represents 5; each vertical space represents 2.
The class interval for each interval is the difference between its upper limit and its lower limit.
For an interval of numbers, two types of brackets are used, [] and (), the first signifies that interval includes the number before/after it and the latter indicate the interval includes everything upto that value.e.g.[0,2] indicates an interval of all real numbers from 0 to 2 including those numbers(-1,6) indicates an interval of all real numbers between -1 and 6 but not -1 and 6 themselves[5,12) indicates an interval of all real numbers from 5 upto but not including 12and (-9,-2] indicates an interval of all real numbers from -2 down to but not including -9.so, an interval of real numbers less than and equal to -4 would be (-­∞,-4], we use a ( for -∞ as, obviously, infinity can never be reached.To graph line intervals, we use a solid line along the interval and use filled circles, •, to signify that the point it is on is included in the interval, and empty circles, ○, to signify the point it is on is not included in the interval. So an interval of [5,12) would be drawn like this,•--------------------○5 6 7 8 9 10 11 12the drawing for (-­∞,-4] would simply be a straight solid line from the end of the negative side of the number line upto -4 with a • to show that -4 is included.
A good way to assess what is a reasonable interval when graphing data is to see if there are any common factors in the data set. In this case 5, 10, 30, 40 and 20 are all clearly divisible by 5. Therefore, 5 would be a reasonable interval to use when graphing the data.