I'm not sure if you're asking for the name of a list or just a list, so here's a list:
Maybe x = y2 would do it. Every data point on the curve would be a perfect square of y.They would all be positive and the curve would go the right really fast. The list is infinite, but the following list gives you integers up to 4392, which is really cool.
1
1 * 1
4
2 * 2
9
3 * 3
16
4 * 4
25
5 * 5
36
6 * 6
49
7 * 7
64
8 * 8
81
9 * 9
100
10 * 10
121
11 * 11
144
12 * 12
169
13 * 13
196
14 * 14
225
15 * 15
256
16 * 16
289
17 * 17
324
18 * 18
361
19 * 19
400
20 * 20
441
21 * 21
484
22 * 22
529
23 * 23
576
24 * 24
625
25 * 25
676
26 * 26
729
27 * 27
784
28 * 28
841
29 * 29
900
30 * 30
961
31 * 31
1024
32 * 32
1089
33 * 33
1156
34 * 34
1225
35 * 35
1296
36 * 36
1369
37 * 37
1444
38 * 38
1521
39 * 39
1600
40 * 40
1681
41 * 41
1764
42 * 42
1849
43 * 43
1936
44 * 44
2025
45 * 45
2116
46 * 46
2209
47 * 47
2304
48 * 48
2401
49 * ShareThis49
2500
50 * 50
2601
51 * 51
2704
52 * 52
2809
53 * 53
2916
54 * 54
3025
55 * 55
3136
56 * 56
3249
57 * 57
3364
58 * 58
3481
59 * 59
3600
60 * 60
3721
61 * 61
3844
62 * 62
3969
63 * 63
4096
64 * 64
4225
65 * 65
4356
66 * 66
4489
67 * 67
4624
68 * 68
4761
69 * 69
4900
70 * 70
5041
71 * 71
5184
72 * 72
5329
73 * 73
5476
74 * 74
5625
75 * 75
5776
76 * 76
5929
77 * 77
6084
78 * 78
6241
79 * 79
6400
80 * 80
6561
81 * 81
6724
82 * 82
6889
83 * 83
7056
84 * 84
7225
85 * 85
7396
86 * 86
7569
87 * 87
7744
88 * 88
7921
89 * 89
8100
90 * 90
8281
91 * 91
8464
92 * 92
8649
93 * 93
8836
94 * 94
9025
95 * 95
9216
96 * 96
9409
97 * 97
9604
98 * 98
9801
99 * 99
10000
100 * 100
10201
101 * 101
10404
102 * 102
10609
103 * 103
10816
104 * 104
11025
105 * 105
11236
106 * 106
11449
107 * 107
11664
108 * 108
11881
109 * 109
12100
110 * 110
12321
111 * 111
12544
112 * 112
12769
113 * 113
12996
114 * 114
13225
115 * 115
13456
116 * 116
13689
117 * 117
13924
118 * 118
14161
119 * 119
14400
120 * 120
14641
121 * 121
14884
122 * 122
15129
123 * 123
15376
124 * 124
15625
125 * 125
15876
126 * 126
16129
127 * 127
16384
128 * 128
16641
129 * 129
16900
130 * 130
17161
131 * 131
17424
132 * 132
17689
133 * 133
17956
134 * 134
18225
135 * 135
18496
136 * 136
18769
137 * 137
19044
138 * 138
19321
139 * 139
19600
140 * 140
19881
141 * 141
20164
142 * 142
20449
143 * 143
20736
144 * 144
21025
145 * 145
21316
146 * 146
21609
147 * 147
21904
148 * 148
22201
149 * 149
22500
150 * 150
22801
151 * 151
23104
152 * 152
23409
153 * 153
23716
154 * 154
24025
155 * 155
24336
156 * 156
24649
157 * 157
24964
158 * 158
25281
159 * 159
25600
160 * 160
25921
161 * 161
26244
162 * 162
26569
163 * 163
26896
164 * 164
27225
165 * 165
27556
166 * 166
27889
167 * 167
28224
168 * 168
28561
169 * 169
28900
170 * 170
29241
171 * 171
29584
172 * 172
29929
173 * 173
30276
174 * 174
30625
175 * 175
30976
176 * 176
31329
177 * 177
31684
178 * 178
32041
179 * 179
32400
180 * 180
32761
181 * 181
33124
182 * 182
33489
183 * 183
33856
184 * 184
34225
185 * 185
34596
186 * 186
34969
187 * 187
35344
188 * 188
35721
189 * 189
36100
190 * 190
36481
191 * 191
36864
192 * 192
37249
193 * 193
37636
194 * 194
38025
195 * 195
38416
196 * 196
38809
197 * 197
39204
198 * 198
39601
199 * 199
40000
200 * 200
40401
201 * 201
40804
202 * 202
41209
203 * 203
41616
204 * 204
42025
205 * 205
42436
206 * 206
42849
207 * 207
43264
208 * 208
43681
209 * 209
44100
210 * 210
44521
211 * 211
44944
212 * 212
45369
213 * 213
45796
214 * 214
46225
215 * 215
46656
216 * 216
47089
217 * 217
47524
218 * 218
47961
219 * 219
48400
220 * 220
48841
221 * 221
49284
222 * 222
49729
223 * 223
50176
224 * 224
50625
225 * 225
51076
226 * 226
51529
227 * 227
51984
228 * 228
52441
229 * 229
52900
230 * 230
53361
231 * 231
53824
232 * 232
54289
233 * 233
54756
234 * 234
55225
235 * 235
55696
236 * 236
56169
237 * 237
56644
238 * 238
57121
239 * 239
57600
240 * 240
58081
241 * 241
58564
242 * 242
59049
243 * 243
59536
244 * 244
60025
245 * 245
60516
246 * 246
61009
247 * 247
61504
248 * 248
62001
249 * 249
62500
250 * 250
63001
251 * 251
63504
252 * 252
>64009
253 * 253
64516
254 * 254
65025
255 * 255
65536
256 * 256
66049
257 * 257
66564
258 * 258
67081
259 * 259
67600
260 * 260
68121
261 * 261
68644
262 * 262
69169
263 * 263
69696
264 * 264
70225
265 * 265
70756
266 * 266
71289
267 * 267
71824
268 * 268
72361
269 * 269
72900
270 * 270
73441
271 * 271
73984
272 * 272
74529
273 * 273
75076
274 * 274
75625
275 * 275
76176
276 * 276
76729
277 * 277
77284
278 * 278
77841
279 * 279
78400
280 * 280
78961
281 * 281
79524
282 * 282
80089
283 * 283
80656
284 * 284
81225
285 * 285
81796
286 * 286
82369
287 * 287
82944
288 * 288
83521
289 * 289
84100
290 * 290
84681
291 * 291
85264
292 * 292
85849
293 * 293
86436
294 * 294
87025
295 * 295
87616
296 * 296
88209
297 * 297
88804
298 * 298
89401
299 * 299
90000
300 * 300
90601
301 * 301
91204
302 * 302
91809
303 * 303
92416
304 * 304
93025
305 * 305
93636
306 * 306
94249
307 * 307
94864
308 * 308
95481
309 * 309
96100
310 * 310
96721
311 * 311
97344
312 * 312
97969
313 * 313
98596
314 * 314
99225
315 * 315
99856
316 * 316
100489
317 * 317
101124
318 * 318
101761
319 * 319
102400
320 * 320
103041
321 * 321
103684
322 * 322
104329
323 * 323
104976
324 * 324
105625
325 * 325
106276
326 * 326
106929
327 * 327
107584
328 * 328
108241
329 * 329
108900
330 * 330
109561
331 * 331
110224
332 * 332
110889
333 * 333
111556
334 * 334
112225
335 * 335
112896
336 * 336
113569
337 * 337
114244
338 * 338
114921
339 * 339
115600
340 * 340
116281
341 * 341
116964
342 * 342
117649
343 * 343
118336
344 * 344
119025
345 * 345
119716
346 * 346
120409
347 * 347
121104
348 * 348
121801
349 * 349
122500
350 * 350
123201
351 * 351
123904
352 * 352
124609
353 * 353
125316
354 * 354
126025
355 * 355
126736
356 * 356
127449
357 * 357
128164
358 * 358
128881
359 * 359
129600
360 * 360
130321
361 * 361
131044
362 * 362
131769
363 * 363
132496
364 * 364
133225
365 * 365
133956
366 * 366
134689
367 * 367
135424
368 * 368
136161
369 * 369
136900
370 * 370
137641
371 * 371
138384
372 * 372
139129
373 * 373
139876
374 * 374
140625
375 * 375
141376
376 * 376
142129
377 * 377
142884
378 * 378
143641
379 * 379
144400
380 * 380
145161
381 * 381
145924
382 * 382
146689
383 * 383
147456
384 * 384
148225
385 * 385
148996
386 * 386
149769
387 * 387
150544
388 * 388
151321
389 * 389
152100
390 * 390
152881
391 * 391
153664
392 * 392
154449
393 * 393
155236
394 * 394
156025
395 * 395
156816
396 * 396
157609
397 * 397
158404
398 * 398
159201
399 * 399
160000
400 * 400
160801
401 * 401
161604
402 * 402
162409
403 * 403
163216
404 * 404
164025
405 * 405
164836
406 * 406
165649
407 * 407
166464
408 * 408
167281
409 * 409
168100
410 * 410
168921
411 * 411
169744
412 * 412
170569
413 * 413
171396
414 * 414
172225
415 * 415
173056
416 * 416
173889
417 * 417
174724
418 * 418
175561
419 * 419
176400
420 * 420
177241
421 * 421
178084
422 * 422
178929
423 * 423
179776
424 * 424
180625
425 * 425
181476
426 * 426
182329
427 * 427
183184
428 * 428
184041
429 * 429
184900
430 * 430
185761
431 * 431
186624
432 * 432
187489
433 * 433
188356
434 * 434
189225
435 * 435
190096
436 * 436
190969
437 * 437
191844
438 * 438
192721
439 * 439
193600
OK. Got it. Now what to do with the list ?
Here is a procedure that would do the job nicely: -- Make a list of all the perfect squares between 5 and 30. (Hint: They are 9, 16, 25, 36, and 49.) -- Find the sum by writing the numbers in a column and adding up the column.
All numbers are square numbers, for example, the square root of 2 squared is 2. If you mean perfect squares, here's a list: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
Yes, as has been known since 1588 For a list of all known perfect numbers see the related link.
8 and 27 are the only two perfect cubes in the range.
A perfect square has an odd number of factors. Factors of numbers always come in pairs -- except for perfect squares. Since the square root of a perfect square is listed only once on the list of factors, it results in a list with an odd number of factors.
The squares of prime numbers greater than 10.
-- Write down a list of the first ten whole numbers. -- For each one, multiply it by itself, and write the product next to it.
OK. Got it. Now what to do with the list ?
Here is a procedure that would do the job nicely: -- Make a list of all the perfect squares between 5 and 30. (Hint: They are 9, 16, 25, 36, and 49.) -- Find the sum by writing the numbers in a column and adding up the column.
Yes. There are 68 of them, from 322 to 992
That's an infinite list, much too long to fit in this space.
All numbers are square numbers, for example, the square root of 2 squared is 2. If you mean perfect squares, here's a list: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
There are 99 such numbers - the squares of 2 to 99 and I do not have the patience to list them all.
The positive integer factors of 36 are: 1, 2, 3, 4, 6, 8, 9, 12, 18, 36 The perfect squares in this list are: 1, 4, 9, 36
To get a list of the squares of the first 1000 numbers we can do:> [n^2 | n sum [n^2 | n
Of the numbers in that list, the perfect squares are 4 (equal to ±22), 9 (equal to ±32), 16 (equal to ±42) and 25 (equal to ±52).