answersLogoWhite

0


Best Answer

I'm not sure if you're asking for the name of a list or just a list, so here's a list:

Maybe x = y2 would do it. Every data point on the curve would be a perfect square of y.They would all be positive and the curve would go the right really fast. The list is infinite, but the following list gives you integers up to 4392, which is really cool.

1

1 * 1

4

2 * 2

9

3 * 3

16

4 * 4

25

5 * 5

36

6 * 6

49

7 * 7

64

8 * 8

81

9 * 9

100

10 * 10

121

11 * 11

144

12 * 12

169

13 * 13

196

14 * 14

225

15 * 15

256

16 * 16

289

17 * 17

324

18 * 18

361

19 * 19

400

20 * 20

441

21 * 21

484

22 * 22

529

23 * 23

576

24 * 24

625

25 * 25

676

26 * 26

729

27 * 27

784

28 * 28

841

29 * 29

900

30 * 30

961

31 * 31

1024

32 * 32

1089

33 * 33

1156

34 * 34

1225

35 * 35

1296

36 * 36

1369

37 * 37

1444

38 * 38

1521

39 * 39

1600

40 * 40

1681

41 * 41

1764

42 * 42

1849

43 * 43

1936

44 * 44

2025

45 * 45

2116

46 * 46

2209

47 * 47

2304

48 * 48

2401

49 * ShareThis49

2500

50 * 50

2601

51 * 51

2704

52 * 52

2809

53 * 53

2916

54 * 54

3025

55 * 55

3136

56 * 56

3249

57 * 57

3364

58 * 58

3481

59 * 59

3600

60 * 60

3721

61 * 61

3844

62 * 62

3969

63 * 63

4096

64 * 64

4225

65 * 65

4356

66 * 66

4489

67 * 67

4624

68 * 68

4761

69 * 69

4900

70 * 70

5041

71 * 71

5184

72 * 72

5329

73 * 73

5476

74 * 74

5625

75 * 75

5776

76 * 76

5929

77 * 77

6084

78 * 78

6241

79 * 79

6400

80 * 80

6561

81 * 81

6724

82 * 82

6889

83 * 83

7056

84 * 84

7225

85 * 85

7396

86 * 86

7569

87 * 87

7744

88 * 88

7921

89 * 89

8100

90 * 90

8281

91 * 91

8464

92 * 92

8649

93 * 93

8836

94 * 94

9025

95 * 95

9216

96 * 96

9409

97 * 97

9604

98 * 98

9801

99 * 99

10000

100 * 100

10201

101 * 101

10404

102 * 102

10609

103 * 103

10816

104 * 104

11025

105 * 105

11236

106 * 106

11449

107 * 107

11664

108 * 108

11881

109 * 109

12100

110 * 110

12321

111 * 111

12544

112 * 112

12769

113 * 113

12996

114 * 114

13225

115 * 115

13456

116 * 116

13689

117 * 117

13924

118 * 118

14161

119 * 119

14400

120 * 120

14641

121 * 121

14884

122 * 122

15129

123 * 123

15376

124 * 124

15625

125 * 125

15876

126 * 126

16129

127 * 127

16384

128 * 128

16641

129 * 129

16900

130 * 130

17161

131 * 131

17424

132 * 132

17689

133 * 133

17956

134 * 134

18225

135 * 135

18496

136 * 136

18769

137 * 137

19044

138 * 138

19321

139 * 139

19600

140 * 140

19881

141 * 141

20164

142 * 142

20449

143 * 143

20736

144 * 144

21025

145 * 145

21316

146 * 146

21609

147 * 147

21904

148 * 148

22201

149 * 149

22500

150 * 150

22801

151 * 151

23104

152 * 152

23409

153 * 153

23716

154 * 154

24025

155 * 155

24336

156 * 156

24649

157 * 157

24964

158 * 158

25281

159 * 159

25600

160 * 160

25921

161 * 161

26244

162 * 162

26569

163 * 163

26896

164 * 164

27225

165 * 165

27556

166 * 166

27889

167 * 167

28224

168 * 168

28561

169 * 169

28900

170 * 170

29241

171 * 171

29584

172 * 172

29929

173 * 173

30276

174 * 174

30625

175 * 175

30976

176 * 176

31329

177 * 177

31684

178 * 178

32041

179 * 179

32400

180 * 180

32761

181 * 181

33124

182 * 182

33489

183 * 183

33856

184 * 184

34225

185 * 185

34596

186 * 186

34969

187 * 187

35344

188 * 188

35721

189 * 189

36100

190 * 190

36481

191 * 191

36864

192 * 192

37249

193 * 193

37636

194 * 194

38025

195 * 195

38416

196 * 196

38809

197 * 197

39204

198 * 198

39601

199 * 199

40000

200 * 200

40401

201 * 201

40804

202 * 202

41209

203 * 203

41616

204 * 204

42025

205 * 205

42436

206 * 206

42849

207 * 207

43264

208 * 208

43681

209 * 209

44100

210 * 210

44521

211 * 211

44944

212 * 212

45369

213 * 213

45796

214 * 214

46225

215 * 215

46656

216 * 216

47089

217 * 217

47524

218 * 218

47961

219 * 219

48400

220 * 220

48841

221 * 221

49284

222 * 222

49729

223 * 223

50176

224 * 224

50625

225 * 225

51076

226 * 226

51529

227 * 227

51984

228 * 228

52441

229 * 229

52900

230 * 230

53361

231 * 231

53824

232 * 232

54289

233 * 233

54756

234 * 234

55225

235 * 235

55696

236 * 236

56169

237 * 237

56644

238 * 238

57121

239 * 239

57600

240 * 240

58081

241 * 241

58564

242 * 242

59049

243 * 243

59536

244 * 244

60025

245 * 245

60516

246 * 246

61009

247 * 247

61504

248 * 248

62001

249 * 249

62500

250 * 250

63001

251 * 251

63504

252 * 252

>64009

253 * 253

64516

254 * 254

65025

255 * 255

65536

256 * 256

66049

257 * 257

66564

258 * 258

67081

259 * 259

67600

260 * 260

68121

261 * 261

68644

262 * 262

69169

263 * 263

69696

264 * 264

70225

265 * 265

70756

266 * 266

71289

267 * 267

71824

268 * 268

72361

269 * 269

72900

270 * 270

73441

271 * 271

73984

272 * 272

74529

273 * 273

75076

274 * 274

75625

275 * 275

76176

276 * 276

76729

277 * 277

77284

278 * 278

77841

279 * 279

78400

280 * 280

78961

281 * 281

79524

282 * 282

80089

283 * 283

80656

284 * 284

81225

285 * 285

81796

286 * 286

82369

287 * 287

82944

288 * 288

83521

289 * 289

84100

290 * 290

84681

291 * 291

85264

292 * 292

85849

293 * 293

86436

294 * 294

87025

295 * 295

87616

296 * 296

88209

297 * 297

88804

298 * 298

89401

299 * 299

90000

300 * 300

90601

301 * 301

91204

302 * 302

91809

303 * 303

92416

304 * 304

93025

305 * 305

93636

306 * 306

94249

307 * 307

94864

308 * 308

95481

309 * 309

96100

310 * 310

96721

311 * 311

97344

312 * 312

97969

313 * 313

98596

314 * 314

99225

315 * 315

99856

316 * 316

100489

317 * 317

101124

318 * 318

101761

319 * 319

102400

320 * 320

103041

321 * 321

103684

322 * 322

104329

323 * 323

104976

324 * 324

105625

325 * 325

106276

326 * 326

106929

327 * 327

107584

328 * 328

108241

329 * 329

108900

330 * 330

109561

331 * 331

110224

332 * 332

110889

333 * 333

111556

334 * 334

112225

335 * 335

112896

336 * 336

113569

337 * 337

114244

338 * 338

114921

339 * 339

115600

340 * 340

116281

341 * 341

116964

342 * 342

117649

343 * 343

118336

344 * 344

119025

345 * 345

119716

346 * 346

120409

347 * 347

121104

348 * 348

121801

349 * 349

122500

350 * 350

123201

351 * 351

123904

352 * 352

124609

353 * 353

125316

354 * 354

126025

355 * 355

126736

356 * 356

127449

357 * 357

128164

358 * 358

128881

359 * 359

129600

360 * 360

130321

361 * 361

131044

362 * 362

131769

363 * 363

132496

364 * 364

133225

365 * 365

133956

366 * 366

134689

367 * 367

135424

368 * 368

136161

369 * 369

136900

370 * 370

137641

371 * 371

138384

372 * 372

139129

373 * 373

139876

374 * 374

140625

375 * 375

141376

376 * 376

142129

377 * 377

142884

378 * 378

143641

379 * 379

144400

380 * 380

145161

381 * 381

145924

382 * 382

146689

383 * 383

147456

384 * 384

148225

385 * 385

148996

386 * 386

149769

387 * 387

150544

388 * 388

151321

389 * 389

152100

390 * 390

152881

391 * 391

153664

392 * 392

154449

393 * 393

155236

394 * 394

156025

395 * 395

156816

396 * 396

157609

397 * 397

158404

398 * 398

159201

399 * 399

160000

400 * 400

160801

401 * 401

161604

402 * 402

162409

403 * 403

163216

404 * 404

164025

405 * 405

164836

406 * 406

165649

407 * 407

166464

408 * 408

167281

409 * 409

168100

410 * 410

168921

411 * 411

169744

412 * 412

170569

413 * 413

171396

414 * 414

172225

415 * 415

173056

416 * 416

173889

417 * 417

174724

418 * 418

175561

419 * 419

176400

420 * 420

177241

421 * 421

178084

422 * 422

178929

423 * 423

179776

424 * 424

180625

425 * 425

181476

426 * 426

182329

427 * 427

183184

428 * 428

184041

429 * 429

184900

430 * 430

185761

431 * 431

186624

432 * 432

187489

433 * 433

188356

434 * 434

189225

435 * 435

190096

436 * 436

190969

437 * 437

191844

438 * 438

192721

439 * 439

193600

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What list of numbers contains only perfect squares?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What type of number has an odd number of factors?

A perfect square has an odd number of factors. Factors of numbers always come in pairs -- except for perfect squares. Since the square root of a perfect square is listed only once on the list of factors, it results in a list with an odd number of factors.


What numbers past 100 have 3 factors?

The squares of prime numbers greater than 10.


How do you figure the first ten perfect squares?

-- Write down a list of the first ten whole numbers. -- For each one, multiply it by itself, and write the product next to it.


Write the first ten perfect squares?

OK. Got it. Now what to do with the list ?


How do you find the sum of all perfect squares between 5 and 30?

Here is a procedure that would do the job nicely: -- Make a list of all the perfect squares between 5 and 30. (Hint: They are 9, 16, 25, 36, and 49.) -- Find the sum by writing the numbers in a column and adding up the column.


Can one List all 4 digit perfect squares?

Yes. There are 68 of them, from 322 to 992


What are all the perfect squares?

That's an infinite list, much too long to fit in this space.


What are the first 10 square numbers?

All numbers are square numbers, for example, the square root of 2 squared is 2. If you mean perfect squares, here's a list: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100


What are the square numbers from 2 to 10000?

There are 99 such numbers - the squares of 2 to 99 and I do not have the patience to list them all.


How many factors of 36 are perfect squares?

The positive integer factors of 36 are: 1, 2, 3, 4, 6, 8, 9, 12, 18, 36 The perfect squares in this list are: 1, 4, 9, 36


Find the programming code for calculating the sum of the squares of the first 1000 numbers in HASKELL?

To get a list of the squares of the first 1000 numbers we can do:> [n^2 | n sum [n^2 | n


Which of these are square numbers 2 4 8 9 10 16 20 25?

Of the numbers in that list, the perfect squares are 4 (equal to ±22), 9 (equal to ±32), 16 (equal to ±42) and 25 (equal to ±52).