The quadrilateral would have to be a parallelogram which is not also a rectangle or a rhombus.
A rhombus is the type of quadrilateral that only has rotational symmetry. Rotational symmetry occurs when a shape can be rotated less than 360 degrees and still look the same. In the case of a rhombus, it has rotational symmetry of order 2, meaning it looks the same after a 180-degree rotation. This is because all sides of a rhombus are of equal length, making it symmetrical under rotation.
Line
Triangle * * * * * The only triangle with rotational symmetry of order 3 is an equilateral triangle and that has 3 lines of symmetry, not 0. The triskelion (the three legs) on the Isle of Man flag has rotational symmetry of order 3 but no lines of symmetry.
A kite has only one line of rotational symmetry, as it is only the same if it is tilted once. (back to its normal position).
A B C D E H K M U V W X Y * * * * * What? Most of these letters do not have rotational symmetry and so cannot have rotational AND line symmetry. Or did the meaning of AND change last night? The only upper case letters with both are H, I, O, X
Assuming that qadrilateal is meant to be quadrilateral then the answer is that in general it would have rotational symmetry of order 1.
A rhombus is the type of quadrilateral that only has rotational symmetry. Rotational symmetry occurs when a shape can be rotated less than 360 degrees and still look the same. In the case of a rhombus, it has rotational symmetry of order 2, meaning it looks the same after a 180-degree rotation. This is because all sides of a rhombus are of equal length, making it symmetrical under rotation.
Four, if the quadrilateral is a square, but if it is a rectangle it only has two and if it is an irregular quadrilateral it most probably only has one. So a rectangle, a rhombus, and a parallelogram have two, orders of rotational symetry but a kite and a trapezium although quadrilaterals (4sides) only have one.
Only an equilateral triangle has rotational symmetry.
It has only 1.
Line
Only H.
I think none. In fact the only triangle that I believe has any rotational symmetry is an equilateral triangle.
Triangle * * * * * The only triangle with rotational symmetry of order 3 is an equilateral triangle and that has 3 lines of symmetry, not 0. The triskelion (the three legs) on the Isle of Man flag has rotational symmetry of order 3 but no lines of symmetry.
When a shape is rotated about its centre, if it comes to rest in a position and looks exactly like the original, then it has rotational symmetry. A shape like an equilateral triangle would therefore have an order of rotational symmetry of 3. The general rule for a regular polygon (shapes such as pentagons, heptagons, octagons etc. is, that the number of sides is the same as the number of lines of symmetry, which is also the same as the rotational symmetry order). This means that a regular hexagon has 6 sides, 6 lines of symmetry and an order of rotational symmetry of 6. Following from this, then a square, which is a regular polygon, has 4 sides, 4 lines of symmetry and an order of rotational symmetry of 4. If a shape has rotational symmetry, it must have either line symmetry or point symmetry or both. For example, a five pointed star has 5 lines of symmetry and rotational symmetry of order 5, but does not have point symmetry. A parallelogram has no line of symmetry, but has rotational symmetry of order 2 and also point symmetry. Only a shape which has line symmetry or point symmetry can have rotational symmetry. When there is point symmetry and also rotational symmetry, the order of the latter is even. For example, the letter 'S' has rotational symmetry of order 2, the regular hexagon of order 6. On this basis, we would suggest that the letter 'F' does not have a rotational symmetry order as it does not have either line symmetry or point symmetry. It doesn't have a centre around which you could rotate it. Sounds weird, but given the definitions, we think this is the case.
First of all, your grammar is terrible. The question should be "Does a triangle have 2 lines of symmetry and 2 lines of rotational symmetry? and the answer is no. A triangle can not have 2 lines of rotational symmetry, because you only rotate the image, you do not use any lines.
A kite or an isosceles trapezoid