There are 5 platonic solids. They are: Tetrahedron, Octahedron, Icosahedron, Cube, and Dodecahedron
There are 5 platonic solids which are the only 5 regular polyhedra (possible).Plato attributed 4 of them to the 4 elements:Fire ≡ TetrahedronEarth ≡ CubeAir ≡ OctahedronWater ≡ IcosahedronAristotle added the fifth element "Ether" saying the heavens were made of it; he did not associate the fifth platonic solid, the Dodecahedron, to it.
The regular tetrahedron - one of the 5 platonic solids.
Answering your questions one at a time.1 - What is a platonic solid?A platonic solid is one with all faces congruent polygons, meaning that they all have the same number of sides, vertices and angle size.2 - How many are there?There are only and exactly five.3 - What are their names?TetrahedronCube (but when talking about Platonic solids, it is commonly referred to as a "hexahedron").OctahedronDodecahedronIcosahedronNote: These individual platonic solids can be identified by their unique Schlafli Symbol. This is demonstrated through the following:{p,q}p = Number of vertices at each faceq = Number of faces at each vertexSo for a dodecahedron, the Shlafli Symbol would be {5,3}, because a pentagon has five {5, or p} vertices, and at any individual vertex three {3, or q} faces meet.Understand? Great!
First, consider that at each vertex (point) at least three faces must come together, for if only two came together they would collapse against one another and we would not get a solid. Second, observe that the sum of the interior angles of the faces meeting at each vertex must be less than 360°, for otherwise they would not all fit together.
There (not their) are 5 platonic solids.
You probably mean the Platonic Solids, they are the only five shapes constructed from the same faces.
There are 5 platonic solids. They are: Tetrahedron, Octahedron, Icosahedron, Cube, and Dodecahedron
The five platonic solids are the Tetrahedron, Hexahedronor Cube, Octahedron, Dodecahedron, and the Icosahedron
There are 5 platonic solids which are the only 5 regular polyhedra (possible).Plato attributed 4 of them to the 4 elements:Fire ≡ TetrahedronEarth ≡ CubeAir ≡ OctahedronWater ≡ IcosahedronAristotle added the fifth element "Ether" saying the heavens were made of it; he did not associate the fifth platonic solid, the Dodecahedron, to it.
The regular tetrahedron - one of the 5 platonic solids.
Assuming that "equal ladder" is meant to be equilateral, the answer is a tetrahedron, one of the 5 Platonic solids.
Answering your questions one at a time.1 - What is a platonic solid?A platonic solid is one with all faces congruent polygons, meaning that they all have the same number of sides, vertices and angle size.2 - How many are there?There are only and exactly five.3 - What are their names?TetrahedronCube (but when talking about Platonic solids, it is commonly referred to as a "hexahedron").OctahedronDodecahedronIcosahedronNote: These individual platonic solids can be identified by their unique Schlafli Symbol. This is demonstrated through the following:{p,q}p = Number of vertices at each faceq = Number of faces at each vertexSo for a dodecahedron, the Shlafli Symbol would be {5,3}, because a pentagon has five {5, or p} vertices, and at any individual vertex three {3, or q} faces meet.Understand? Great!
A four faced figure is a tetrahedron. If they are all congruent triangles, they are all equilateral triangles and it is a regular tetrahedron - one of the 5 Platonic Solids.
None, since polyhedons cannot be spherical. A regular polyhedron must be convex, so that word is superfluous. There are 5 regular polyhedra - the Platonic solids.
There are only 5 known regular Platonic solids and they and their properties are:- 1 Tetrahedron: (pyramid) 4 equilateral triangle faces, 6 edges and 4 vertices 2 Hexahedron (cube) 6 square faces, 12 edges and 8 vertices 3 Octahedron: 8 equilateral triangle faces, 12 edges and 6 vertices 4 Dodecahedron: 12 regular pentagon faces, 30 edges and 20 vertices 5 Icosahedron: 20 equilateral triangle faces, 30 edges and 12 vertices All of them can be inscribed inside a sphere.
There are 5. They are the tetrahedron (4 triangular faces), the cube (6 square faces), the octahedron (8 triangular faces), the dodecahedron (12 pentagonal faces), and the icosahedron (20 triangular faces).