The standard deviation provides in indication of what proportion of the entire distribution of the sample falls within a certain distance from the mean or average for that sample. If your data falls on a normal (or bell shaped) distribution, a SD of 1 indicates that about 68% of your data points (scores or whatever else) fall within 1 point (plus or minus) of the average (mean) of the data, and 95% fall within 2 points.
Chat with our AI personalities
Information is not sufficient to find mean deviation and standard deviation.
If I have understood the question correctly, despite your challenging spelling, the standard deviation is the square root of the average of the squared deviations while the mean absolute deviation is the average of the deviation. One consequence of this difference is that a large deviation affects the standard deviation more than it affects the mean absolute deviation.
Standard deviation is the square root of the variance.
A large standard deviation means that the data were spread out. It is relative whether or not you consider a standard deviation to be "large" or not, but a larger standard deviation always means that the data is more spread out than a smaller one. For example, if the mean was 60, and the standard deviation was 1, then this is a small standard deviation. The data is not spread out and a score of 74 or 43 would be highly unlikely, almost impossible. However, if the mean was 60 and the standard deviation was 20, then this would be a large standard deviation. The data is spread out more and a score of 74 or 43 wouldn't be odd or unusual at all.
Standard error is the difference between a researcher's actual findings and their expected findings. Standard error measures the accuracy of one's predictions. Standard deviation is the difference between the results of one's experiment as compared with other results within that experiment. Standard deviation is used to measure the consistency of one's experiment.