It goes down. Wavelength is inversely proportional to the frequency
Frequency is inversely proportional to the wave length, thus saying the shorter the wave length the higher the frequency and vice versa.The frequency is the number of waves within a time period. As the frequency within that time period increases, the number of waves increases, therefore the width of each wave (wavelength) within that time period has to decrease. Therefore:As the wave length increases, the frequency decreasesAs the wave length decreases, the frequency increases
As the wavelength decreases, the frequency of the waves increases. This is because frequency and wavelength are inversely proportional - as one decreases, the other increases, according to the equation: speed = frequency x wavelength.
When the energy of a wave increases, the frequency of the wave also increases. This is because frequency is directly proportional to energy in a wave. High frequency waves have more energy than low frequency waves.
I would say the most obvious is the length of the constituent waves.
When the frequency of light waves increases, the energy of the light also increases. This is because energy and frequency are directly proportional in electromagnetic waves, such as light. Therefore, higher frequency light waves carry more energy than lower frequency light waves.
Velocity increases..
Frequency is inversely proportional to the wave length, thus saying the shorter the wave length the higher the frequency and vice versa.The frequency is the number of waves within a time period. As the frequency within that time period increases, the number of waves increases, therefore the width of each wave (wavelength) within that time period has to decrease. Therefore:As the wave length increases, the frequency decreasesAs the wave length decreases, the frequency increases
As the wavelength decreases, the frequency of the waves increases. This is because frequency and wavelength are inversely proportional - as one decreases, the other increases, according to the equation: speed = frequency x wavelength.
When the energy of a wave increases, the frequency of the wave also increases. This is because frequency is directly proportional to energy in a wave. High frequency waves have more energy than low frequency waves.
I would say the most obvious is the length of the constituent waves.
When the frequency of light waves increases, the energy of the light also increases. This is because energy and frequency are directly proportional in electromagnetic waves, such as light. Therefore, higher frequency light waves carry more energy than lower frequency light waves.
If the frequency of light waves increases, the energy of the waves also increases. The energy of a photon is directly proportional to its frequency, according to the equation E=hf, where E is energy, h is the Planck constant, and f is frequency. Therefore, higher frequency light waves have higher energy content.
the amplitude increases
If the frequency of waves traveling at the same speed increases, the wavelength will decrease. This is because wavelength and frequency are inversely proportional: as frequency increases, wavelength decreases, and vice versa. The relationship is defined by the formula: speed = frequency x wavelength.
The wavelength of electromagnetic waves decreases as the frequency increases.
As frequency increases, the wavelength of electromagnetic waves decreases. This is because these two properties are inversely proportional to each other, meaning that as one increases, the other decreases. This relationship is described by the equation: wavelength = speed of light / frequency.
Frequency and wavelength of a wave are inversely related: as frequency increases, wavelength decreases, and vice versa. This relationship is described by the wave equation: speed = frequency x wavelength. In other words, for a given wave speed, if frequency increases, wavelength must decrease to maintain the same speed.