No, frequency and wavelength are inversely related in a phenomenon called the wavelength-frequency relationship. As the wavelength increases, the frequency decreases, and vice versa. This relationship is described by the equation: Speed = Frequency x Wavelength.
Wavelength and frequency are inversely proportional in the wavelength-frequency equation. This means that as the wavelength of a wave increases, the frequency decreases, and vice versa.
Frequency and wavelength are inversely related - as frequency increases, wavelength decreases, and vice versa. This is described by the equation: speed = frequency x wavelength. This means that a wave with a higher frequency will have a shorter wavelength, and a wave with a lower frequency will have a longer wavelength.
The frequency of a wavelength is inversely proportional to its wavelength. This means that as the wavelength increases, the frequency decreases, and vice versa. This relationship is described by the formula: frequency = speed of light / wavelength.
When wavelength decreases, frequency increases. This is because frequency and wavelength are inversely proportional to each other according to the equation: speed = frequency x wavelength.
No, frequency and wavelength are inversely related in a phenomenon called the wavelength-frequency relationship. As the wavelength increases, the frequency decreases, and vice versa. This relationship is described by the equation: Speed = Frequency x Wavelength.
Wavelength = Velocity / Frequency So, Velocity = Wavelength * Frequency
Wavelength = (speed) divided by (frequency) Frequency = (speed) divided by (wavelength) Speed = (frequency) times (wavelength)
Wavelength and frequency are inversely proportional in the wavelength-frequency equation. This means that as the wavelength of a wave increases, the frequency decreases, and vice versa.
Frequency and wavelength are inversely related - as frequency increases, wavelength decreases, and vice versa. This is described by the equation: speed = frequency x wavelength. This means that a wave with a higher frequency will have a shorter wavelength, and a wave with a lower frequency will have a longer wavelength.
Frequency = (speed) / (wavelength)
The frequency of a wavelength is inversely proportional to its wavelength. This means that as the wavelength increases, the frequency decreases, and vice versa. This relationship is described by the formula: frequency = speed of light / wavelength.
When wavelength decreases, frequency increases. This is because frequency and wavelength are inversely proportional to each other according to the equation: speed = frequency x wavelength.
The amplitude of a wave does not affect its wavelength as wavelength is determined by the speed of the wave and its frequency. Frequency and wavelength are inversely proportional; as frequency increases, wavelength decreases, and vice versa. This relationship is expressed mathematically as wavelength = speed of the wave / frequency.
wavelength. This is because frequency and wavelength have an inverse relationship, meaning as frequency increases, wavelength decreases. This relationship is described by the equation speed = frequency x wavelength, where speed is the speed of light in a vacuum.
Frequency and wavelength are inversely related. This means that as the frequency of a wave increases, its wavelength decreases, and vice versa. This relationship is described by the formula: speed = frequency x wavelength.
The wavelength of light is inversely proportional to its frequency. This means that light with a shorter wavelength will have a higher frequency, and light with a longer wavelength will have a lower frequency. In other words, as the wavelength decreases, the frequency increases.