The speed of sound=343m/Sec
Wavelength= Speed/Frequency=343/340=1.009m
The wavelength of a sound wave in air can be calculated using the formula: wavelength = speed of sound / frequency. For a 440 Hz tone in air at room temperature, the speed of sound is approximately 343 meters per second. Therefore, the wavelength of a 440 Hz tone in air is approximately 0.78 meters.
The wavelength of a 680 Hz tone moving through air can be calculated using the formula: wavelength = speed of sound / frequency. The speed of sound in air at room temperature is approximately 343 m/s. Therefore, the wavelength of a 680 Hz tone in air would be about 0.504 meters (504 mm).
The longest wavelength that a human can hear corresponds to a frequency of about 20 Hz, which is typically the lower limit of human hearing. Wavelength and frequency are inversely proportional; as frequency decreases, wavelength increases.
The speed of a wave is calculated by multiplying its wavelength by its frequency. In this case, the speed would be 340 m/s.
The wavelength of a 440 Hz wave in air can be calculated using the formula: wavelength = speed of sound in air / frequency. The speed of sound in air at room temperature is approximately 343 m/s. Therefore, the wavelength of a 440 Hz wave in air is approximately 0.780 meters.
The wavelength of a sound wave in air can be calculated using the formula: wavelength = speed of sound / frequency. For a 440 Hz tone in air at room temperature, the speed of sound is approximately 343 meters per second. Therefore, the wavelength of a 440 Hz tone in air is approximately 0.78 meters.
The wavelength of a 680 Hz tone moving through air can be calculated using the formula: wavelength = speed of sound / frequency. The speed of sound in air at room temperature is approximately 343 m/s. Therefore, the wavelength of a 680 Hz tone in air would be about 0.504 meters (504 mm).
Lower frequency equates to a longer wavelength, so the 340 Hz tuning fork would emit a longer wavelength sound.
The longest wavelength that a human can hear corresponds to a frequency of about 20 Hz, which is typically the lower limit of human hearing. Wavelength and frequency are inversely proportional; as frequency decreases, wavelength increases.
The speed of a wave is given by the equation speed = frequency x wavelength. If a 340 Hz sound wave travels at 340 meters per second, then its wavelength is 1 meter (Option D) because 340 Hz x 1 m = 340 m/s.
The speed of a wave is calculated by multiplying its wavelength by its frequency. In this case, the speed would be 340 m/s.
The wavelength of a 440 Hz wave in air can be calculated using the formula: wavelength = speed of sound in air / frequency. The speed of sound in air at room temperature is approximately 343 m/s. Therefore, the wavelength of a 440 Hz wave in air is approximately 0.780 meters.
No, the speed of sound may be 340 meters per second.The frequency is speed of sound divided by wavelength.So your frequency f = 340 / 0.68 = 500 Hz.
The wavelength is (the speed of the wave) / (350) .
The wavelength of a 34000 Hz ultrasound wave in air can be calculated using the formula: wavelength = speed of sound / frequency. In air at room temperature, the speed of sound is approximately 343 m/s. Plugging in the values, we get: wavelength = 343 m/s / 34000 Hz ≈ 0.01 meters or 1 centimeter.
Answer: frequency = 272 Hz. Given the wave velocity (speed of sound) and wavelength, find the frequency of the wave. Velocity = 340.0 m/s, Wavelength = 1.25 m. Formulas: Velocity = wavelength * frequency. Frequency = velocity / wavelength. Calculation: Frequency = (340.0 m/s) / (1.25 m) = 272 Hz. (Where Hertz = cycles / second.)
The wavelength of sound in air at 20,000 Hz is approximately 1.7 centimeters. This can be calculated using the formula: wavelength = speed of sound / frequency, where the speed of sound in air at room temperature is about 343 meters per second.