Boyles law
Increasing the volume of an object increases the amount of water it displaces, which in turn increases the buoyant force acting on the object. According to Archimedes' principle, the buoyant force is equal to the weight of the fluid displaced by the object. Therefore, as the volume of the object increases, it displaces more fluid, resulting in a greater buoyant force.
When an object displaces its volume in a fluid, it experiences an upward buoyant force equal to the weight of the fluid it displaces. This is known as Archimedes' principle. As a result, the object will float if the buoyant force is greater than its weight, sink if the buoyant force is less, or remain suspended at a certain depth if they are equal.
The buoyant force on an object in a fluid is equal to the weight of the fluid that the object displaces. This concept is known as Archimedes' principle.
Yes, Archimedes' principle states that the buoyant force on an object is equal to the weight of the fluid it displaces, not the density. The buoyant force is equal to the weight of the fluid displaced by the object.
The buoyant force on an object is equal to the weight of the water it displaces. This is called Archimedes' principle, which states that "The buoyant force on an object is equal to the weight of the fluid displaced by the object."
Increasing the volume of an object increases the amount of water it displaces, which in turn increases the buoyant force acting on the object. According to Archimedes' principle, the buoyant force is equal to the weight of the fluid displaced by the object. Therefore, as the volume of the object increases, it displaces more fluid, resulting in a greater buoyant force.
etrw
When an object displaces its volume in a fluid, it experiences an upward buoyant force equal to the weight of the fluid it displaces. This is known as Archimedes' principle. As a result, the object will float if the buoyant force is greater than its weight, sink if the buoyant force is less, or remain suspended at a certain depth if they are equal.
The buoyant force on an object in a fluid is equal to the weight of the fluid that the object displaces. This concept is known as Archimedes' principle.
The buoyant force on an object is least when the object is completely submerged in a fluid. This occurs when the weight of the object is equal to the weight of the fluid it displaces, resulting in a net force of zero.
Yes, Archimedes' principle states that the buoyant force on an object is equal to the weight of the fluid it displaces, not the density. The buoyant force is equal to the weight of the fluid displaced by the object.
The buoyant force on an object is equal to the weight of the water it displaces. This is called Archimedes' principle, which states that "The buoyant force on an object is equal to the weight of the fluid displaced by the object."
A buoyant object displaces an amount of water equal to its own weight. This is known as Archimedes' principle. The object experiences an upward buoyant force equivalent to the weight of the water it displaces, allowing it to float.
When an object floats, the buoyant force acting on it is equal to the weight of the fluid that the object displaces. This principle is known as Archimedes' principle. The buoyant force is able to counteract the weight of the object, allowing it to float.
The buoyant force on a floating object is equal to the weight of the water it displaces. This is known as Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by an object.
The bouyant force depends on the volume of an object. Specifically, the volume of fluid the object displaces.
The buoyant force is directly proportional to the volume of the object displaced in a fluid. This is because a larger volume displaces more fluid, creating a greater upward force (buoyant force) on the object according to Archimedes' principle.