One place where this is used is to simplify fractions: you need to find the greatest common factor, then divide top and bottom by this greatest common factor.Also, in factoring expressions - you can take out the greatest common factor. For example (using "^" for power): 5x^2 + 10x has the greatest common factor 5x; so this can be taken out as a common factor, resulting in 5x(x + 2).
In order to simplify a rational fraction, you can divide the numerator and denominator by their greatest common factor. However, it is often simpler to divide them both by any common factor (not necessarily the greatest) and then to repeat the process with the resulting fraction. This can be just as fast as finding a large common factor and then carrying out divisions using a large number.
When doing fractions it is the greatest common factor (GCF) and the least common multiple (LCM). You want the GCF when you are reducing fractions to their simplest form. When changing the denominators to a common one, you want the LCM.
They really aren't all that similar... Greastest common factor finds the greatest number that you can divide both numbers by... for example, the GCF of 15 and 20 is 5, because 15 / 3 = 5 and 20 / 4 = 5, there is no higher number for division purposes that the two share. 10 is higher than 5 in the case of 20, but you cannot divide 15 by 10 without getting a remainder of 5. Least common multiple finds the smallest common number that you can get when multiplying a number... for example, the LCM of 15 and 45 is 15 itself; 15 x 1 = 15, and 15 x 3 = 45. There is no smaller number that you can find that is common between the two. Another example, since the previous one had an LCM of an actual number being asked would be 18 and 24... in this case it would be 72 because there is no smaller number that the two share when multiplied by another value. They are somewhat similar in how you find the end value, however. By dividing the two given numbers in the case of LCM, you will eventually break them up into prime numbers. Eliminating all similar numbers and then multiplying what is left will give you the LCM. In the case of GCF, by doing the same thing minus multiplying the prime numbers, you will end up finding the greatest number that the two are divisible by.
The lowest common multiple is 90 .There is no highest one. If you think you've found the highest one,just add 90 to it, and you'll have a higher common multiple. You cancontinue doing that forever.
watsup im doing homework so here 1 2 4 8 16 32 64 128
Finding the GCF of the numerator and the denominator of a fraction and dividing them both by it will give you the simplest form of that fraction. Finding the LCM of unlike denominators and converting them to it will make it possible to add and subtract unlike fractions.
When doing fractions it is the greatest common factor (GCF) and the least common multiple (LCM). You want the GCF when you are reducing fractions to their simplest form. When changing the denominators to a common one, you want the LCM.
The greatest common factor of 22 and 66 can be done in a split second. I am assuming the person who asked this question knew that 2 x 3 = 6. Multiplication works in your favor. When doing 22 x 3, You do 2x 3, and then 2x 3 again, thus getting 66. The answer is therefore 22.
The following answer describes four methods of finding the greatest common factor, with examples, and several "tricks" or shortcuts that can make it easier.Method: Guess and RefineSometimes, you can look at two numbers and make a good guess that you can refine.Example 1: Find the greatest common factor of 45 and 50.Because both numbers end in either a 5 or 0, you know that they are both divisible by 5. If you divide both numbers by 5 and the results have no common factors (except 1), 5 is the greatest common factor.45 ÷ 5 = 950 ÷ 5 = 10Since 9 and 10 are consecutive numbers, they have no common factors. Therefore, the greatest common factor is 5.Example 2: Find the greatest common factor of 150 and 750.Both numbers end in 50, so they are both divisible by 50. If you divide both numbers by 50 and the results have another common factor, you continue identifying common factors until you have a pair without common factors.150 ÷ 50 = 3750 ÷ 50 = 15Since 15 is divisible by 3, and 3 is divisible by 3, you have another common factor, which is 3. Then, you can divide the most recent results by 3.3 ÷ 3 = 115 ÷ 3 = 5Since 1 and 5 do not have any common factors, take the two factors that you did identify, 50 and 3, and multiply them together: 50 x 3 = 150. This number, 150, is the greatest common factor.Method: Find All the FactorsIf the numbers are small enough or you know that they have only a few factors, you can list all the factors of each number and compare to determine the largest factor they have in common. One of the related questions links will take you to a page with the complete list of factors for numbers 1 through 100.Example: Find the greatest common factor of 15 and 18.The factors of 15 are 1, 3, 5, and 15.The factors of 18 are 1, 2, 3, 6, 9, and 18.The common factors are 1 and 3, so the greatest common factor is 3.Example: Find the greatest common factor of 26 and 91.The factors of 26 are 1, 2, 13, and 26.The factors of 91 are 1, 7, 13, and 91.The common factors are 1 and 13, so the greatest common factor is 13.Method: Find the Prime FactorsIn situations where you cannot get a good start simply by looking at the numbers, follow the following steps:1. Determine the prime factors of each number. See the related question "How do you find prime factors" for a method on doing this. Also, one of the related questions links will take you to a page with the complete list of prime factors for numbers 1 through 100.2. Determine the prime factors they have in common.3. Multiply all the prime factors they have in common to calculate the greatest common factor. Example: Find the greatest common factor of 5,544 and 37,620.The prime factors of 5,544 are 2, 2, 2, 3, 3, 7, and 11.The prime factors of 37,620 are 2, 2, 3, 3, 5, 11, and 19.The common prime factors are 2, 2, 3, 3, and 11.Therefore, the greatest common factor is 2 x 2 x 3 x 3 x 11 = 396. Example: Find the greatest common factor of 7,888 and 10,002.The prime factors of 7,888 are 2, 2, 2, 2, 17, and 29.The prime factors of 10,002 are 2, 3, and 1667.The common prime factors are a single 2.Therefore, the greatest common factor is 2. Method: Euclidean AlgorithmThis method is more efficient than finding the prime factors when the numbers are large, but teachers might prefer that you gain experience determining the prime factors of numbers. For this method, divide the larger number by the smaller number, then divide the "divisor" from the previous division by the remainder from the previous division, and continue until a number divides evenly. That divisor is the greatest common factor. Example: Find the greatest common factor of 33 and 77.77 ÷ 33 = 2 remainder 1133 ÷ 11 = 3 with no remainderSo, the final divisor, 11, is the greatest common factor. Example: Find the greatest common factor of 27 and 168.168 ÷ 27 = 6 remainder 627 ÷ 6 = 4 remainder 36 ÷ 3 = 2 with no remainderSo, the final divisor, 3, is the greatest common factor.---- Shortcut 1: If one number is a multiple of the other, the smaller number is the greatest common factor, because it is the largest possible factor of itself.Example: Find the greatest common factor of 72 and 288.288 is divisible by 72, therefore 72 is the greatest common factor.Shortcut 2: The greatest common factor of two numbers cannot be larger than the difference between the two numbers. So, you only need to test the numbers that are equal to or less than the difference between those two numbers. Also, the greatest common factor must be a factor of the difference between the two numbers. (This shortcut can help with finding the greatest common factor of three or more numbers. Examples are shown in the related question on finding the greatest common factor of three or more numbers.)Example: Find the greatest common factor of 56 and 64.The difference between 56 and 64 is 64 - 56 = 8. The largest possible common factor is the difference itself. So, check whether 8 divides evenly into both of them.56 ÷ 8 = 764 ÷ 8 = 8Therefore, 8 is the greatest common factor. Example: Find the greatest common factor of 72 and 88.The difference between 88 and 72 is 88 - 72 = 16. Check whether 16 divides evenly into both of them. It does not. But, the greatest common factor must be a factor of 16. The factors of 16 are 1, 2, 4, 8, and 16. So, try the next largest factor, 8, and see if it divides evenly into both of them.72 ÷ 8 = 988 ÷ 8 = 11Therefore, 8 is the greatest common factor.Example: Find the greatest common factor of 1003 and 1180.The difference between 1180 and 1003 is 177. Check whether 177 divides evenly into both of them. It does not. But, the greatest common factor must be a factor of 177. By using the divisibility rule for 3, you know that 3 is a factor of 177, but the divisibility rule indicates that neither 1003 nor 1180 are divisible by 3. 177 ÷ 3 = 59, so check 59 as a factor of both numbers. Note that 3 and 59 are both prime numbers, so they are the only prime factors of 177, so if there is a greatest common factor of 1003 and 1180 other than 1, since we have ruled out 177 and 3, it must be 59.1003 ÷ 59 = 171180 ÷ 59 = 20Therefore, 59 is the greatest common factor. Corollary 1 to Shortcut 2: If the numbers are only one number apart, they are relatively prime and have no common factor other than 1. Example: Find the greatest common factor of 4 and 5.The difference is 1, so the greatest common factor is 1. They are relatively prime.Corollary 2 to Shortcut 2: If the difference between the two numbers is 2 and the numbers are not even numbers, they are relatively prime and have no common factor other than 1. If the difference is 2 and they are both even, the greatest common factor is 2.Example: Find the greatest common factor of 13 and 15.The difference is 2 and the numbers are not even, so the greatest common factor is 1. Example: Find the greatest common factor of 14 and 16.The difference is 2 and the numbers are even, so the greatest common factor is 2.Corollary 3 to Shortcut 2: If the difference between the two numbers is a prime number, either that number is the greatest common factor or 1 is the greatest common factor. Example: Find the greatest common factor of 40 and 69.The difference is 29, which is a prime number. Since 29 does not divide evenly into both 40 and 69, the greatest common factor is 1, which means they are relatively prime. Example: Find the greatest common factor of 91 and 104.The difference is 13, which is a prime number. Since 13 divides evenly into both 91 and 104, the greatest common factor is 13.91 ÷ 13 = 7104 ÷ 13 = 8 Shortcut 3: If one of the numbers is prime, either it is the greatest common factor or the greatest common factor is 1. (Its only factors are 1 and itself, so those are the only possible common factors it could have with another number.)Example: Find the greatest common factor of 83 and 90.83 is a prime number and it is not a factor of 90, so the greatest common factor is 1. Example: Find the greatest common factor of 41 and 246.41 is a prime number and it is a factor of 246, so the greatest common factor is 41.246 ÷ 41 is 6---- Divisibility Rules:To determine the prime factors, it is sometimes helpful to use the divisibility rules.2: The number ends in 0, 2, 4, 6, or 8.Examples: 14, 58, 100, 33363: The sum of the number's digits is divisible by 3.Examples: 78 (7+8=15 which is divisible by 3), 114 (1+1+4=6 which is divisible by 3)5: The number ends in 0 or 5.Examples: 70, 195, 48607: The last digit doubled subtracted from the rest of the number is divisible by 7 or is equal to 0.Examples: 343 (3x2=6; 34-6=28 which is divisible by 7), 875 (5x2=10; 87-10=77 which is divisible by 7)11: Start with the left-most digit, subtract the next one, add the next one, subtract the next one, etc., and the final result is divisible by 11 or is equal to 0.Examples: 165 (1-6+5=0), 308 (3-0+8=11 which is divisible by 11), 1078 (1-0+7-8=0)Prime Numbers: Prime factors are prime numbers. The first 25 prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.
The greatest common factor is the highest number that divides exactly into two or more numbers.42: 1, 2, 3, 6, 7, 14, 21, 4298: 1, 2, 7, 14, 49, 98The GCF of 42 and 98 is 14.If you're not a good guesser the best way to go about doing this is to list all the factors of each number, like so:42-- 98--1 12 23 76 147142142Well, I did not list all the factors of 98, but I know that since 98 is not divisible by 21 or 42 that the greatest common factor is 14.Answer: 14
By Euclid's algorithm, that's the same as the gcf of 28 and 16 - where 16 is calculated as the remainder of 100 divided by 28. (You can continue by doing the division of 28 by 16; the next pair will be 16 and that remainder.)
You determine all numbers that will can be divided evenly (without a remainder) into the object numbers. The highest number doing that is the common factor.
120 and 140 have lots of common factors. e.g. 10, 5, 1, 20 You probably need to find the Highest common factor which is 20. But if you are doing your homework you probably need to show how you worked it out: 1 - Find the prime factors for each number 2 - Write the ones that appear in both in a list 3 - Multiply the numbers in your list
To reduce any fraction to its lowest terms, divide the numeratorand the denominator by their greatest common factor.You have 36/54.The factors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, and 36.The factors of 54 are 1, 2, 3, 6, 9, 18, 27, and 54.The common factors are 1, 2, 3, 6, 9, and 18.The greatest common factor is 18 .36 / 18 = 254 / 18 = 336/54 = 2/3Note:That's why you had to spend all that time doing common factors andgreatest common factor before you could go on to doing fractions.
You should be doing this unaided as I am sure it is the Scottish Junior Maths Challenge!
Well, honey, finding the greatest common factor of the numerator and denominator is like finding that one friend who always has your back. By identifying the largest number that both the top and bottom can be divided by, you can simplify the fraction to its lowest terms. It's like decluttering your closet - getting rid of the unnecessary stuff to make things simpler and more efficient.
1 cm = 10 mm (multiply by 10) 1 mm = 0.1 cm (divide by 10) The conversion factor is 10, but be careful about what direction you're doing the conversion.
3 x 3 x 5 = 45 2 x 2 x 2 x 7 = 56 Since none of the prime factors are the same, the GCF is 1.