30
A x B = |A| |B| sin[theta]
The sine function is used in the cross product because the magnitude of the cross product of two vectors is determined by the area of the parallelogram formed by those vectors. This area is calculated as the product of the magnitudes of the vectors and the sine of the angle between them. Specifically, the formula for the cross product (\mathbf{A} \times \mathbf{B}) includes (|\mathbf{A}||\mathbf{B}|\sin(\theta)), where (\theta) is the angle between the vectors, capturing the component of one vector that is perpendicular to the other. Thus, the sine function accounts for the directional aspect of the vectors in determining the resultant vector's magnitude and orientation.
If x is the angle between the two vectors then the magnitudes are equal if cos(x) = sin(x). That is, when x = pi/4 radians.
no .....the scalar product of two vectors never be negative Yes it can If A is a vector, and B = -A, then A.B = -A2 which is negative. Always negative when the angle is between the vectors is obtuse.
Dot Product:Given two vectors, a and b, their dot product, represented as a ● b, is equal to their magnitudes multiplied by the cosine of the angle between them, θ, and is a scalar value.a ● b = ║a║║b║cos(θ)Cross Product:Given two vectors, a and b, their cross product, which is a vector, is represented as a X b and is equal to their magnitudes multiplied by the sine of the angle between them, θ, and then multiplied by a unit vector, n, which points perpendicularly away, via the right-hand rule, from the plane that a and bdefine.a X b= ║a║║b║sin(θ)n
A x B = |A| |B| sin[theta]
The sine function is used in the cross product because the magnitude of the cross product of two vectors is determined by the area of the parallelogram formed by those vectors. This area is calculated as the product of the magnitudes of the vectors and the sine of the angle between them. Specifically, the formula for the cross product (\mathbf{A} \times \mathbf{B}) includes (|\mathbf{A}||\mathbf{B}|\sin(\theta)), where (\theta) is the angle between the vectors, capturing the component of one vector that is perpendicular to the other. Thus, the sine function accounts for the directional aspect of the vectors in determining the resultant vector's magnitude and orientation.
If x is the angle between the two vectors then the magnitudes are equal if cos(x) = sin(x). That is, when x = pi/4 radians.
Scalar product (or dot product) is the product of the magnitudes of two vectors and the cosine of the angle between them. It results in a scalar quantity. Vector product (or cross product) is the product of the magnitudes of two vectors and the sine of the angle between them, which results in a vector perpendicular to the plane containing the two original vectors.
The direction of the cross product between vectors a and b is perpendicular to both a and b, following the right-hand rule.
no .....the scalar product of two vectors never be negative Yes it can If A is a vector, and B = -A, then A.B = -A2 which is negative. Always negative when the angle is between the vectors is obtuse.
if any one of the vectors is a null vector or if A is the angle between the two vectors then tanA =1
Dot Product:Given two vectors, a and b, their dot product, represented as a ● b, is equal to their magnitudes multiplied by the cosine of the angle between them, θ, and is a scalar value.a ● b = ║a║║b║cos(θ)Cross Product:Given two vectors, a and b, their cross product, which is a vector, is represented as a X b and is equal to their magnitudes multiplied by the sine of the angle between them, θ, and then multiplied by a unit vector, n, which points perpendicularly away, via the right-hand rule, from the plane that a and b define.a X b = ║a║║b║sin(θ)n
Dot Product:Given two vectors, a and b, their dot product, represented as a ● b, is equal to their magnitudes multiplied by the cosine of the angle between them, θ, and is a scalar value.a ● b = ║a║║b║cos(θ)Cross Product:Given two vectors, a and b, their cross product, which is a vector, is represented as a X b and is equal to their magnitudes multiplied by the sine of the angle between them, θ, and then multiplied by a unit vector, n, which points perpendicularly away, via the right-hand rule, from the plane that a and bdefine.a X b= ║a║║b║sin(θ)n
To multiply two vectors in 3D, you can use the dot product or the cross product. The dot product results in a scalar quantity, while the cross product produces a new vector that is perpendicular to the original two vectors.
Cross product tests for parallelism and Dot product tests for perpendicularity. Cross and Dot products are used in applications involving angles between vectors. For example given two vectors A and B; The parallel product is AxB= |AB|sin(AB). If AXB=|AB|sin(AB)=0 then Angle (AB) is an even multiple of 90 degrees. This is considered a parallel condition. Cross product tests for parallelism. The perpendicular product is A.B= -|AB|cos(AB) If A.B = -|AB|cos(AB) = 0 then Angle (AB) is an odd multiple of 90 degrees. This is considered a perpendicular condition. Dot product tests for perpendicular.
Normally you use sine theta with the cross product and cos theta with the vector product, so that the cross product of parallel vectors is zero while the dot product of vectors at right angles is zero.