To find the Least Common Multiple (LCM) of 6, 16, and 38, you first need to find the prime factorization of each number. The prime factorization of 6 is 2 x 3, 16 is 2^4, and 38 is 2 x 19. Then, identify the highest power of each prime factor that appears in any of the numbers: 2^4, 3^1, and 19^1. Finally, multiply these prime factors together to get the LCM, which is 2^4 x 3 x 19 = 144.
Chat with our AI personalities
Factor them.
2 x 3 = 6
2 x 2 x 2 x 2 = 16
2 x 19 + 38
Combine the highest amount of each factor.
2 x 2 x 2 x 2 x 3 x 19 = 912, the LCM
Do a Venn diagram of the prime factors of the three number and then multiply together the numbers appearing in the diagram - once for each appearance. The LCM is 912.
The LCM of 6 & 16 is... 48.
The answer is 16. LCM you try to find the lowest possible common multiple and so the answer is 16. Why? Ex. Multiples of 2 | of 16 2 {16} 4 6 8 10 12 14 {16}
The Least Common Multiple (LCM) for 6 38 is 114.
The LCM is 48
6