The answer depends on the number whose square root you wish to obtain and also what tools you have at your disposal. If you have a decent calculator or a computer then the solution is trivial.
If the number is a perfect square, then you need to factorise it. Pair off equal factors. Then the square root is the product of one from each pair. For example, to find sqrt(144):
144 = 2*2*2*2*3*3 = (2*2)*(2*2)*(3*3)
So sqrt(144) = 2 * 2 * 3 = 12.
Otherwise, you will have to use a numerical method, such as the Newton-Raphson method.
If you want to find the square root of kkk, define f(x) = x^2 – kkk.
Then finding the square root of kkk is equivalent to solving f(x) = 0.
Let f’(x) = 2x. This is the derivative of f(x) but you do not need to know that to use the N-R method.
Start with x0 as the first guess.
Then let xn+1 = xn - f(xn)/f’(xn) for n = 0, 1, 2, …
Provided you made a reasonable choice for the starting point, the iteration will very quickly converge to the true answer.
It works even if your first guess is not so good:
Suppose you want the square root of 7 and you you start with x0 = 5 (a pretty poor choice since 5^2 is 25, which is nowhere near 7).
Even so, x3 = 2.2362512515, which is less than 0.01% from the true value. Finally, remember that the negative value is also a square root.
There are infinitely many of them. They include square root of (4.41) square root of (4.42) square root of (4.43) square root of (4.44) square root of (4.45) square root of (5.3) square root of (5.762) square root of (6) square root of (6.1) square root of (6.2)
A principal square root is any square root that's answer is positive, and a perfect square root is a square root that's answer is an integer.
square root of 20 = square root of 4 * square root of 5. square root of 4 = 2, so your answer is 2 square root of 5.
Square root (24) - square root (6) = 2.44948974
We will walk through the definition of the square root of 63, find out whether the square root of 63 is rational or irrational, and see how to find the square root of 63 by the long division method. ... Square Root of 63.
The square root of the square root of 2
Let the coefficient by 'x' Hence its square root is x^(1/2) or x^(0.5) Then the square root again is [x^(1/2)]^(1/2) Third time over {[x^(1/2)]^(1/2)}^(1/2) Now the rules of indices are [x^(n)[^(m) = x^(nm) When terms are 'nested' , multiply together. Also x^(n) X x^(m) = x^(n+m) x^)n) / x^(m) = x^(n-m) However, the first rule (nesting) applies in this case, when you multiply the indices together/ Hence x^(1/2 X 1/2 X 1/2) = x^(1/8) , Which is the 8th root.!!!!!
square root of (2 ) square root of (3 ) square root of (5 ) square root of (6 ) square root of (7 ) square root of (8 ) square root of (9 ) square root of (10 ) " e " " pi "
There are infinitely many of them. They include square root of (4.41) square root of (4.42) square root of (4.43) square root of (4.44) square root of (4.45) square root of (5.3) square root of (5.762) square root of (6) square root of (6.1) square root of (6.2)
It's not a square if it has no root. If a number is a square then, by definition, it MUST have a square root. If it did not it would not be a square.
square root 2 times square root 3 times square root 8
The principal square root is the non-negative square root.
A principal square root is any square root that's answer is positive, and a perfect square root is a square root that's answer is an integer.
square root of 20 = square root of 4 * square root of 5. square root of 4 = 2, so your answer is 2 square root of 5.
To simplify the square root of 5 times the square root of 6, you can multiply the two square roots together. This gives you the square root of (5*6), which simplifies to the square root of 30. Therefore, the simplified answer is the square root of 30.
the square root of 3, the square root of 5, the square root of 6, the square root of 7, the square root of 8 etc
Square root (75) / square root (3) = 5