9
The sum of an odd and an even number is odd. Any odd number can be expressed as 2n + 1 (for some integer "n"). Any even number can be expressed as 2m (for another integer, "m"). The sum of the two is 2(m+n) + 1. Since the expression in parentheses is an integer, multiplying it by 2 gives you an even number. Adding 1 makes the entire expression odd.
The next odd integer after 40 is 41
The number 71 is an integer, an odd integer, a positive odd integer, and also a prime number.
It is quite easy to prove this using algebra. Suppose x is the smaller of the two odd integer. The fact that x is odd means that it is of the form 2m + 1 where m is an integer. [m integer => 2m is an even integer => 2m + 1 is odd] The next odd integer will be x + 2, which is (2m + 1) + 2 = 2m + 3 The sum of these two consecutive odd integers is, therefore, 2m + 1 + 2m + 3 = 4m + 4 = 4(m + 1) Since m is an integer, m+1 is an integer and so 4(m + 1) represents a factorisation of the answer which implies that 4 is a factor of the sum. In other words, the sum is a multiple of 4.
The statement is not true. Disprove by counter-example: 3 is an integer and 5 is an integer, their product is 15 which is odd.
It cannot be done. The basic rules of math. odd integer plus odd integer = even integer. odd integer plus even integer = odd integer. Always. odd integer plus odd integer plus odd integer = odd integer. Always.
The product of an odd and even number will always have 2 as a factor. Therefore, it will always be even.
9
33 The 17th odd positive integer is
The sum of an odd and an even number is odd. Any odd number can be expressed as 2n + 1 (for some integer "n"). Any even number can be expressed as 2m (for another integer, "m"). The sum of the two is 2(m+n) + 1. Since the expression in parentheses is an integer, multiplying it by 2 gives you an even number. Adding 1 makes the entire expression odd.
The next odd integer after 40 is 41
even integer.
The number 71 is an integer, an odd integer, a positive odd integer, and also a prime number.
It is quite easy to prove this using algebra. Suppose x is the smaller of the two odd integer. The fact that x is odd means that it is of the form 2m + 1 where m is an integer. [m integer => 2m is an even integer => 2m + 1 is odd] The next odd integer will be x + 2, which is (2m + 1) + 2 = 2m + 3 The sum of these two consecutive odd integers is, therefore, 2m + 1 + 2m + 3 = 4m + 4 = 4(m + 1) Since m is an integer, m+1 is an integer and so 4(m + 1) represents a factorisation of the answer which implies that 4 is a factor of the sum. In other words, the sum is a multiple of 4.
Yes.
It is the square of an odd integer.