Approx 98 centimetres.
It is 32 cm.
Approx 0.087 metres.
Approx 0.087 metres.
To calculate the fall over a 5-degree roof pitch over a 6-meter span, you can use the tangent of the angle. The height (fall) is equal to the length multiplied by the tangent of the angle: ( \text{Fall} = 6 , \text{m} \times \tan(5^\circ) ). This results in approximately 0.52 meters, or 52 centimeters of fall over the 6-meter length.
To calculate the fall (or rise) for an 11-degree roof over 1 meter, you can use the tangent of the angle. The fall can be calculated as: fall = 1 meter * tan(11 degrees). This gives approximately 0.193 meters, or 19.3 centimeters of fall over 1 meter of horizontal distance.
Approx 0.087 metres.
It is 32 cm.
Approx 0.087 metres.
Approx 0.087 metres.
10*sin(1) metres = 0.175 metres = 17.5 cm.
To calculate the fall over a 5-degree roof pitch over a 6-meter span, you can use the tangent of the angle. The height (fall) is equal to the length multiplied by the tangent of the angle: ( \text{Fall} = 6 , \text{m} \times \tan(5^\circ) ). This results in approximately 0.52 meters, or 52 centimeters of fall over the 6-meter length.
30cm
To calculate the fall (or rise) for an 11-degree roof over 1 meter, you can use the tangent of the angle. The fall can be calculated as: fall = 1 meter * tan(11 degrees). This gives approximately 0.193 meters, or 19.3 centimeters of fall over 1 meter of horizontal distance.
To calculate the fall (or drop) of an 8-degree roof over a distance of 1 meter, you can use the tangent function from trigonometry. The formula is: fall = distance × tan(angle). For an 8-degree angle, the fall is approximately 1 meter × tan(8°), which equals about 0.14 meters, or 14 centimeters.
To determine the fall (or slope) of a 2-degree roof over a 4-meter span, you can use the formula for rise: rise = distance × tan(angle). For a 2-degree angle, the rise is approximately 0.07 meters (or 7 centimeters) over 4 meters. Therefore, the fall over a 4-meter length at a 2-degree slope is about 7 centimeters.
It is approx 80.4 mm.
For a roof with a 1.5-degree slope over a distance of 1 meter, the fall can be calculated using basic trigonometry. The vertical drop (fall) is equal to the distance multiplied by the sine of the angle. Therefore, the fall is approximately 0.026 meters, or 26 millimeters.