l2Math. l2Math.
The acceleration of the car can be calculated using the formula: acceleration = (final velocity - initial velocity) / time. Converting the initial velocity of 0 km/hr to m/s and final velocity of 60 km/hr to m/s, and plugging in the values, we get the acceleration to be 2 m/s^2.
the final velocity = initial velocity + acceleration x time; since acceleration is negative final velocity = 45 - 10x3 = 45 -30 = 15 mph
The airplane's final velocity will be its initial velocity plus its acceleration multiplied by time. Initial velocity is 0, so the final velocity will be (20 mph/s)(30 s) = 600 mph.
To calculate acceleration, you need to know the initial velocity of the car and its final velocity after 6.8 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time.
That depends on its initial velocity and its acceleration. V1 = V0 + a * t
The distance the car travels during the acceleration can be calculated using the formula: distance = (initial velocity)(time) + 0.5(acceleration)(time)^2. Plug in the values: initial velocity = 0 m/s, final velocity = 40 m/s, time = 8 s. Calculate the distance traveled during the acceleration.
The final velocity of the car can be calculated using the formula: final velocity = initial velocity + (acceleration * time). Since the car starts from rest, its initial velocity is 0. Plugging in the values, we get: final velocity = 0 + (9 ft/s^2 * 8 s) = 72 ft/s. Therefore, the final velocity of the car is 72 ft/s.
Acceleration of the arrow is -3m/s2A = (velocity minus initial velocity) / time
It accelerates to 100 km/p in 4.0 seconds and can reach a top speed of 315 km/h or 195 m/ h.
The acceleration of the car can be calculated using the formula: acceleration = (final velocity - initial velocity) / time. In this case, the final velocity is 20+10 = 30 miles/sec, the initial velocity is 20 miles/sec, and the time is 30 seconds. So, the acceleration of the car is (30 - 20) / 30 = 0.33 miles/sec^2.
Acceleration occurs when velocity changes over time. The formula for it is as follows: a = (Vf - Vi) / t a: acceleration (meters/seconds2) Vf: Final velocity (meters/seconds) Vi: Initial Velocity (meters/seconds) t: Time (seconds)
To calculate the braking time from 1.5 to 2 seconds, we need to know the initial velocity and the acceleration of the object. The final velocity can be determined using the formula: final velocity = initial velocity + (acceleration * time). If we have this information, we can plug in the values to find the final velocity at 2 seconds.