answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
More answers

Posible

User Avatar

Add your answer:

Earn +20 pts
Q: Is it possible to use primary data as independent variable and secondary data as independent variable in correlation analysis and regression analysis?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How can correlation and regression analysis be used to make strategic decisions in a dynamic competitive business environment filled with risk and uncertainty.?

Correlation and regression analysis can help business to investigate the determinants of key variables such as their sales. Variations in a companies sales are likely to be related to variation in product prices,consumers,incomes,tastes and preference's multiple regression analysis can be used to investigate the nature of this relationship and correlation analysis can be used to test the goodness of fit. Regression can also be used to estimate the trend in a time series to make forecast


What is the similarities between correlation analysis and regression analysis?

Correlation analysis seeks to establish whether or not two variables are correlated. That is to say, whether an increase in one is accompanied by either an increase (or decrease) in the other most of the time. It is a measure of the degree to which they change together. Regression analysis goes further and seeks to measure the extent of the change. Using statistical techniques, a regression line is fitted to the observations and this line is the best measure of how changes in one variable affect the other variable. Although the first of these variables is frequently called an independent or even explanatory variable, and the second is called a dependent variable, the existence of regression does not imply a causal relationship.


Multiple regression analysis examines the relationship of several dependent variables on the independent variable?

True.


What is the difference between corelation and regression?

I've included links to both these terms. Definitions from these links are given below. Correlation and regression are frequently misunderstood terms. Correlation suggests or indicates that a linear relationship may exist between two random variables, but does not indicate whether X causes Yor Y causes X. In regression, we make the assumption that X as the independent variable can be related to Y, the dependent variable and that an equation of this relationship is useful. Definitions from Wikipedia: In probability theory and statistics, correlation (often measured as a correlation coefficient) indicates the strength and direction of a linear relationship between two random variables. In statistics, regression analysis refers to techniques for the modeling and analysis of numerical data consisting of values of a dependent variable (also called a response variable) and of one or more independent variables (also known as explanatory variables or predictors). The dependent variable in the regression equation is modeled as a function of the independent variables, corresponding parameters ("constants"), and an error term. The error term is treated as a random variable. It represents unexplained variation in the dependent variable. The parameters are estimated so as to give a "best fit" of the data. Most commonly the best fit is evaluated by using the least squares method, but other criteria have also been used.


What happens when you introduce more than one independent variable into a linear regression analysis?

this is for a class in Math-233-statistics