Incenter
The intersection of the angle bisectors of a triangle is called the incenter. It is equidistant from the sides of the triangle and can be constructed by drawing the angle bisectors of the triangle's angles. The incenter is the center of the incircle, which is the circle inscribed within the triangle.
incenter
It is called the incenter.
the point of intersection of the angle bisectors of a triangle
The Incenter is located at intersection of the angle bisectors.The Incenter can be used to fine a specific point that's equal distant from 3 specific points.
triangles angle bisector is called incenter..
angle bisectors
The 3 angle bisectors of a triangle intersect in a point known as the INCENTER.
The incenter is the center of the incircle for a polygon or insphere for a polyhedron (when they exist). The corresponding radius of the incircle or insphere is known as the inradius. The incenter can be constructed as the intersection of angle bisectors. It is also the interior point for which distances to the sides of the triangle are equal. It hastrilinear coordinates
The common intersection of the angle bisectors of a triangle is called the incenter. It is the center of the inscribed circle of the triangle, and is equidistant from the three sides of the triangle.
The incenter of a triangle is the point at which the 3 medians (lines from the vertex to the middle of the side opposite the vertex) of the triangle intersect. Per it's definition, the incenter cannot ever fall outside the triangle. On the other hand, the orthocenter (intersection of the altitudes) can. It does so whenever the triangle is obtuse.