equilateral triangle , isosceles triangle , scalene triangle
nonononono
a perpendicular line.
hi felicia
Someone correct me if I am wrong, but I don't believe triangles can be "equal", only congruent. The measurements can be equal, but not the triangle itself.The triangle congruency postulates and theorems are:Side/Side/Side Postulate - If all three sides of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Angle/Side/Angle Postulate - If two angles and a side included within those angles of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Side/Angle/Side Postulate - If two sides and an angle included within those sides of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Angle/Angle/Side Theorem - If two angles and an unincluded side of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Hypotenuse/Leg Theorem - (right triangles only) If the hypotenuse and a leg of a right triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.
The three secondary parts of a triangle are typically associated with one word. They are commonly called the perpendicular bisectors of the triangle.
3w4n k03 p03h j3j3j3j3j3j3
A triangle is one of the basic shapes of geometry: a polygon with three corners or vertices and three sides or edges which are line segments. A triangle with vertices A, B, and C is denoted ABC.the secondary parts are at the bottom.the secondary parts of the trianglemedian - a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite sideangle bisector - a segment which bisects an angle and whose endpoints are a vertex of the triangle and a point on the opposite sidealtitude - a segment from the vertex of the triangle perpendicular to the line containing the opposite sideperpendicular bisector - a line whose points are equidistant from the endpoints of the given side.incenter - the point of concurrency of the three angle bisectors of the trianglecentroid - the point of concurrency of the three medians of the triangleorthocenter - the point of concurrency of the three altitudes of the trianglecircumcenter - the point of concurrency of the three perpendicular bisectors of the sides of the triangle .by merivic lacaya and acefg123ZNNHS Student. Toronto university student
what are the primary and secondary parts of business letter
equilateral triangle , isosceles triangle , scalene triangle
The tree main parts of a triangle are the sides, the angles and the vertices.
nonononono
A sentence that has secondary parts, not only main parts.
a perpendicular line.
A triangle is one of the basic shapes of geometry: a polygon with three corners or vertices and three sides or edges which are line segments. A triangle with vertices A, B, and C is denoted ABC.In Euclidean geometry any three non-collinear points determine a unique triangle and a unique plane (i.e. a two-dimensional Euclidean space).the secondary parts of the trianglemedian - a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite sideangle bisector - a segment which bisects an angle and whose endpoints are a vertex of the triangle and a point on the opposite sidealtitude - a segment from the vertex of the triangle perpendicular to the line containing the opposite sideperpendicular bisector - a line whose points are equidistant from the endpoints of the given sideincenter - the point of concurrency of the three angle bisectors of the trianglecentroid - the point of concurrency of the three medians of the triangleorthocenter - the point of concurrency of the three altitudes of the trianglecircumcenter - the point of concurrency of the three perpendicular bisectors of the sides of the triangle
Hypotenuse the longest side of the triangle, then the Legs: Adjacent and Opposite
angle bisector