The volume is proportional to the cube of the diameter, but the area, only to the square of the diameter. For example, if you double the diameter, the area will increase by a factor of 4, and the volume, by a factor of 8. Thus, the area/volume ratio will worsen, by a factor of 2.
The volume is proportional to the cube of the diameter, but the area, only to the square of the diameter. For example, if you double the diameter, the area will increase by a factor of 4, and the volume, by a factor of 8. Thus, the area/volume ratio will worsen, by a factor of 2.
The volume is proportional to the cube of the diameter, but the area, only to the square of the diameter. For example, if you double the diameter, the area will increase by a factor of 4, and the volume, by a factor of 8. Thus, the area/volume ratio will worsen, by a factor of 2.
The volume is proportional to the cube of the diameter, but the area, only to the square of the diameter. For example, if you double the diameter, the area will increase by a factor of 4, and the volume, by a factor of 8. Thus, the area/volume ratio will worsen, by a factor of 2.
Chat with our AI personalities
The volume is proportional to the cube of the diameter, but the area, only to the square of the diameter. For example, if you double the diameter, the area will increase by a factor of 4, and the volume, by a factor of 8. Thus, the area/volume ratio will worsen, by a factor of 2.
The ratio of the surface area of a cube to its volume is inversely proportional to the length of its side.
The larger the surface area to volume ratio of a cell, the smaller its size (and vice versa).
The higher the ratio, the faster the rate of diffusion
Volume of a sphere = 4/3*pi*radius3 measured in cubic units Surface area of a sphere = 4*pi*radius2 measured in square units
cell membrane